login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081091
Primes of the form 2^i + 2^j + 1, i > j > 0.
19
7, 11, 13, 19, 37, 41, 67, 73, 97, 131, 137, 193, 521, 577, 641, 769, 1033, 1153, 2053, 2081, 2113, 4099, 4129, 8209, 12289, 16417, 18433, 32771, 32801, 32833, 40961, 65539, 133121, 147457, 163841, 262147, 262153, 262657, 270337, 524353, 524801
OFFSET
1,1
COMMENTS
This is sequence A070739 without the Fermat primes, A000215. Sequence A081504 lists the i for which there are no primes. - T. D. Noe, Jun 22 2007
Primes in A014311. - Reinhard Zumkeller, May 03 2012
LINKS
T. D. Noe and Robert Israel, Table of n, a(n) for n = 1..7800 (n = 1..1000 from T. D. Noe)
Richard Ehrenborg and N. Bradley Fox, The Descent Set Polynomial Revisited, arXiv:1408.6858 [math.CO], 2014.
Norman B. Fox, Combinatorial Potpourri: Permutations, Products, Posets, and Pfaffians, University of Kentucky, Theses and Dissertations, Mathematics, Paper 25.
FORMULA
A000120(a(n)) = 3.
EXAMPLE
7 = 2^2 + 2^1 + 1
11 = 2^3 + 2^1 + 1
13 = 2^3 + 2^2 + 1
19 = 2^4 + 2^1 + 1
37 = 2^5 + 2^2 + 1
41 = 2^5 + 2^3 + 1
67 = 2^6 + 2^1 + 1
73 = 2^6 + 2^3 + 1
97 = 2^6 + 2^5 + 1
131 = 2^7 + 2^1 + 1
137 = 2^7 + 2^3 + 1
193 = 2^7 + 2^6 + 1
521 = 2^9 + 2^3 + 1
MAPLE
N:= 20: # to get all terms < 2^N
select(isprime, [seq(seq(2^i+2^j+1, j=1..i-1), i=1..N-1)]); # Robert Israel, May 17 2016
MATHEMATICA
Select[Flatten[Table[2^i + 2^j + 1, {i, 21}, {j, i-1}]], PrimeQ] (* Alonso del Arte, Jan 11 2011 *)
PROG
(PARI) do(mx)=my(v=List(), t); for(i=2, mx, for(j=1, i-1, if(ispseudoprime(t=2^i+2^j+1), listput(v, t)))); Vec(v) \\ Charles R Greathouse IV, Jan 02 2014
(PARI) is(n)=hammingweight(n)==3 && isprime(n) \\ Charles R Greathouse IV, Aug 28 2017
(PARI) A81091=[7]; next_A081091(p, i=exponent(p), j=exponent(p-2^i))=!until(isprime(2^i+2^j+1), j++>=i && i++ && j=1)+2^i+2^j
A081091(n)={for(k=#A81091, n-1, A81091=concat(A81091, next_A081091(A81091[k]))); A81091[n]} \\ M. F. Hasler, Mar 03 2023
(Haskell)
a081091 n = a081091_list !! (n-1)
a081091_list = filter ((== 1) . a010051') a014311_list
-- Reinhard Zumkeller, May 03 2012
(Python)
from itertools import count, islice
from sympy import isprime
from sympy.utilities.iterables import multiset_permutations
def A081091_gen(): # generator of terms
return filter(isprime, map(lambda s:int('1'+''.join(s)+'1', 2), (s for l in count(1) for s in multiset_permutations('0'*(l-1)+'1'))))
A081091_list = list(islice(A081091_gen(), 30)) # Chai Wah Wu, Jul 19 2022
CROSSREFS
Essentially the same as A070739.
Cf. A095077 (primes with four bits set).
A057733 = 2^A057732 + 3 and A039687 = 3*2^A002253 + 1 are subsequences.
Sequence in context: A059308 A075521 A084444 * A027901 A129213 A110966
KEYWORD
nonn,easy,changed
AUTHOR
Reinhard Zumkeller, Mar 05 2003
STATUS
approved