

A002253


Numbers n such that 3*2^n+1 is prime.
(Formerly M1318 N0506)


6



1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 353, 408, 438, 534, 2208, 2816, 3168, 3189, 3912, 20909, 34350, 42294, 42665, 44685, 48150, 54792, 55182, 59973, 80190, 157169, 213321, 303093, 362765, 382449, 709968, 801978, 916773, 1832496, 2145353, 2291610, 2478785, 5082306, 7033641, 10829346
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

From Zak Seidov, Mar 08 2009: (Start)
List is complete up to 3941000 according to the list of RB & WK.
So far there are only 4 primes: 2, 5, 41, 353. (End)


REFERENCES

D. E. Knuth, The Art of Computer Programming. AddisonWesley, Reading, MA, Vol. 2, p. 614.
H. Riesel, ``Prime numbers and computer methods for factorization,'' Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see pp. 381384.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..49.
Ray Ballinger, Proth Search Page
Ray Ballinger and Wilfrid Keller, List of primes k.2^n + 1 for k < 300
C. K. Caldwell, The Prime Pages
Y. Gallot, Proth.exe: Windows Program for Finding Large Primes
Wilfrid Keller, List of primes k.2^n  1 for k < 300
Eric Weisstein's World of Mathematics, Proth Prime
Index entries for sequences of n such that k*2^n1 (or k*2^n+1) is prime


CROSSREFS

Cf. A039687, A002254.
Sequence in context: A026179 A230902 A105107 * A032716 A132229 A028750
Adjacent sequences: A002250 A002251 A002252 * A002254 A002255 A002256


KEYWORD

hard,nonn


AUTHOR

N. J. A. Sloane


EXTENSIONS

Corrected and extended according to the list of Ray Ballinger and Wilfrid Keller by Zak Seidov, Mar 08 2009
Edited by N. J. A. Sloane, Mar 13 2009
Two more terms (from http://www.prothsearch.net/riesel.html), Joerg Arndt, Apr 07 2013
One more term (from http://primes.utm.edu/primes/page.php?id=116922), Fabrice Le Foulher, Mar 09 2014


STATUS

approved



