login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333965
Numbers k such that k * A171744(k) increases to a record.
1
1, 2, 5, 6, 8, 12, 14, 16, 18, 20, 25, 27, 32, 43, 45, 46, 52, 58, 70, 71, 77, 81, 91, 105, 109, 149, 158, 176, 240, 247, 297, 303, 401, 421, 431, 531, 536, 542, 543, 608, 617, 622, 640, 643, 667, 677, 685, 713, 720, 748, 751, 1028, 1085, 1203, 1282, 1320, 1466, 1600
OFFSET
1,2
LINKS
EXAMPLE
6 is in the sequence as A171744(6) = 22 and 6*22 = 132. This is a record; no n less than 6 produces a product of at least 132.
MAPLE
f:= proc(p) local t, k;
t:= 1;
for k from 1 do
t:= t*p;
if nops(convert(convert(t, base, 10), set))=10 then return k fi;
od
end proc:
R:= NULL: m:= 0: p:= 1: count:= 0:
for k from 1 while count < 100 do
p:= nextprime(p);
v:= k*f(p);
if v > m then
R:= R, k;
m:= v;
count:= count+1
fi
od:
R; # Robert Israel, Aug 05 2024
MATHEMATICA
With[{s = Array[Block[{p = Prime@ #, k = 1}, While[Min@ DigitCount[p^k] == 0, k++]; k #] &, 1600]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Aug 21 2020 *)
PROG
(PARI) f(n) = {my(k=1, p=prime(n)); while(#Set(digits(p^k))<10, k++); k; } \\ A171744
lista(nn) = {my(m=0, x); for (n=1, nn, x = n*f(n); if (x >m, m = x; print1(n, ", ")); ); } \\ Michel Marcus, Jan 26 2021
CROSSREFS
Cf. A171744.
Sequence in context: A230902 A243680 A280381 * A105107 A002253 A032716
KEYWORD
nonn,base
AUTHOR
David A. Corneth, Aug 14 2020
STATUS
approved