Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Aug 06 2024 02:23:02
%S 1,2,5,6,8,12,14,16,18,20,25,27,32,43,45,46,52,58,70,71,77,81,91,105,
%T 109,149,158,176,240,247,297,303,401,421,431,531,536,542,543,608,617,
%U 622,640,643,667,677,685,713,720,748,751,1028,1085,1203,1282,1320,1466,1600
%N Numbers k such that k * A171744(k) increases to a record.
%H Robert Israel, <a href="/A333965/b333965.txt">Table of n, a(n) for n = 1..1064</a>
%e 6 is in the sequence as A171744(6) = 22 and 6*22 = 132. This is a record; no n less than 6 produces a product of at least 132.
%p f:= proc(p) local t,k;
%p t:= 1;
%p for k from 1 do
%p t:= t*p;
%p if nops(convert(convert(t,base,10),set))=10 then return k fi;
%p od
%p end proc:
%p R:= NULL: m:= 0: p:= 1: count:= 0:
%p for k from 1 while count < 100 do
%p p:= nextprime(p);
%p v:= k*f(p);
%p if v > m then
%p R:= R,k;
%p m:= v;
%p count:= count+1
%p fi
%p od:
%p R; # _Robert Israel_, Aug 05 2024
%t With[{s = Array[Block[{p = Prime@ #, k = 1}, While[Min@ DigitCount[p^k] == 0, k++]; k #] &, 1600]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* _Michael De Vlieger_, Aug 21 2020 *)
%o (PARI) f(n) = {my(k=1, p=prime(n)); while(#Set(digits(p^k))<10, k++); k; } \\ A171744
%o lista(nn) = {my(m=0, x); for (n=1, nn, x = n*f(n); if (x >m, m = x; print1(n, ", ")););} \\ _Michel Marcus_, Jan 26 2021
%Y Cf. A171744.
%K nonn,base
%O 1,2
%A _David A. Corneth_, Aug 14 2020