login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277445
Determinants of the equally spaced angles sines to tangents matrices.
0
1, -2, -4, 4, 48, -160, -32, 2176, 6912, 0, -273408, 41984, 19456, -37027840, -141705216, 0, 3833856, -34359869440, 0, 1625620480000, 11045440585728, -47710208, -520279482695680, 7719016726528, 909115392000, -207717914210467840, 0, 0, 100736516652659638272, -721057900040447590400
OFFSET
1,2
LINKS
O. D. Biesel, D. V. Ingerman, J. A. Morrow, and W. T. Shore, Layered networks, the discrete Laplacian, and a continued fraction identity, Mathematics REU 2008, University of Washington.
Zhi-Wei Sun, On some determinants involving the tangent function, arXiv:1901.04837 [math.NT], 2019.
FORMULA
Let n be a natural number. a(n) = det(T(n)), where T(n) is the n X n matrix with entries 1,0 and -1, such that 2*T(n)*s(n) = t(n), where s(n) and t(n) are vectors of length n, given by s(n) = sin(k*Pi/(2n+1)) and t(n) = tan(k*Pi/(2n+1)), for k=1..n.
Existence of the matrix T(n) is proved for prime 2n+1, in which case the entries of T(n) are 1 and -1. Computer checked for small 2n+1...
Examples:
2*sin(Pi/3) = tan(Pi/3),
2*(-sin(Pi/5) + sin(2*Pi/5)) = tan(Pi/5),
2*(sin(Pi/5) + sin(2*Pi/5)) = tan(2*Pi/5),
2*(sin(Pi/7) + sin(2*Pi/7) - sin(3*Pi/7)) = tan(Pi/7),
2*(sin(Pi/7) + sin(2*Pi/7) + sin(3*Pi/7)) = tan(3*Pi/7),
...
EXAMPLE
a(1) = det([1]) = 1,
a(2) = det([-1 1], [1 1]) = -2,
a(3) = det([1 1 -1], [1 -1 1], [1 1 1]) = -4,
a(4) = det([-1 1 1 -1], [-1 1 -1 1], [0 0 1 0], [1 1 1 1]) = 4.
...
PROG
(SageMath)
def binary_trig(n):
N=2*n+1
print(N, "th root of unity")
T=matrix(ZZ, n, n)
for ll in range(n):
l=ll*2+1
for kk in range(n):
k=kk+1
T[min(l*n%N, N-l*n%N)-1, min(k*l%N, N-k*l%N)-1]=sign(RDF(sin(k*l*pi/N)))
s=matrix(RDF, n, 1)
for k in range(n):
s[k, 0]=sin((k+1)*pi/N)
for k in range(n):
if (T*s)[k, 0]<0:
#if prod(T[k])==0:
T[k]=-T[k]
return det(T)
CROSSREFS
Related to A007318 by the continued fraction.
Sequence in context: A360685 A290606 A155952 * A145636 A334190 A280795
KEYWORD
sign
AUTHOR
David V. Ingerman, Oct 15 2016
STATUS
approved