login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A277443
Square array A(n,k) (n>=1, k>=1) read by antidiagonals: A(n,k) is the number of n-colorings of the prism graph Y_k on 2k vertices.
1
0, 0, 0, 0, 2, 0, 0, 0, 18, 0, 0, 2, 12, 84, 0, 0, 0, 114, 264, 260, 0, 0, 2, 180, 2652, 1920, 630, 0, 0, 0, 858, 16080, 29660, 8520, 1302, 0, 0, 2, 1932, 119844, 367080, 198030, 28140, 2408, 0, 0, 0, 7074, 816984, 4843460, 4067280, 932862, 76272, 4104, 0, 0, 2, 18660, 5784492, 62682480, 85847910, 28576380, 3440024, 179424, 6570, 0
OFFSET
1,5
COMMENTS
Y_1 contains a loop, so has no colorings with any number of colors. Y_2 is the cycle graph C_4 with two double edges; these two graphs are therefore equivalent with respect to number of colorings.
LINKS
N. L. Biggs, R. M. Damerell and D. A. Sands, Recursive families of graphs, Journal of Combinatorial Theory Series B Volume 12 (1972), 123-131. MR0294172
Eric Weisstein's World of Mathematics, Prism Graph
FORMULA
A(n,k) = (n^2-3n+3)^k+(n-1)((3-n)^k+(1-n)^k)+n^2-3n+1.
EXAMPLE
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, ...
0, 2, 0, 2, 0, 2, 0, ...
0, 18, 12, 114, 180, 858, 1932, ...
0, 84, 264, 2652, 16080, 119844, 816984, ...
0, 260, 1920, 29660, 367080, 4843460, 62682480, ...
0, 630, 8520, 198030, 4067280, 85847910, 1800687000, ...
CROSSREFS
Cf. A277444 (colorings of Möbius ladders), A182406 (square grid graphs).
Columns k=1,2 are A000004 and A091940.
Rows n=1,2 are A000004 and A010673.
Sequence in context: A136615 A283950 A342376 * A209401 A029696 A118887
KEYWORD
nonn,tabl
AUTHOR
Jeremy Tan, Oct 15 2016
STATUS
approved