login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Determinants of the equally spaced angles sines to tangents matrices.
0

%I #51 Feb 26 2020 08:14:28

%S 1,-2,-4,4,48,-160,-32,2176,6912,0,-273408,41984,19456,-37027840,

%T -141705216,0,3833856,-34359869440,0,1625620480000,11045440585728,

%U -47710208,-520279482695680,7719016726528,909115392000,-207717914210467840,0,0,100736516652659638272,-721057900040447590400

%N Determinants of the equally spaced angles sines to tangents matrices.

%H O. D. Biesel, D. V. Ingerman, J. A. Morrow, and W. T. Shore, <a href="http://www.math.washington.edu/~reu/papers/2008/william/layered.pdf">Layered networks, the discrete Laplacian, and a continued fraction identity</a>, Mathematics REU 2008, University of Washington.

%H Zhi-Wei Sun, <a href="https://arxiv.org/abs/1901.04837">On some determinants involving the tangent function</a>, arXiv:1901.04837 [math.NT], 2019.

%H Wikibooks, <a href="https://en.wikibooks.org/wiki/On_2D_Inverse_Problems/The_case_of_the_unit_disc">On 2D Inverse Problems/The case of the unit disc</a>

%F Let n be a natural number. a(n) = det(T(n)), where T(n) is the n X n matrix with entries 1,0 and -1, such that 2*T(n)*s(n) = t(n), where s(n) and t(n) are vectors of length n, given by s(n) = sin(k*Pi/(2n+1)) and t(n) = tan(k*Pi/(2n+1)), for k=1..n.

%F Existence of the matrix T(n) is proved for prime 2n+1, in which case the entries of T(n) are 1 and -1. Computer checked for small 2n+1...

%F Examples:

%F 2*sin(Pi/3) = tan(Pi/3),

%F 2*(-sin(Pi/5) + sin(2*Pi/5)) = tan(Pi/5),

%F 2*(sin(Pi/5) + sin(2*Pi/5)) = tan(2*Pi/5),

%F 2*(sin(Pi/7) + sin(2*Pi/7) - sin(3*Pi/7)) = tan(Pi/7),

%F 2*(sin(Pi/7) + sin(2*Pi/7) + sin(3*Pi/7)) = tan(3*Pi/7),

%F ...

%e a(1) = det([1]) = 1,

%e a(2) = det([-1 1], [1 1]) = -2,

%e a(3) = det([1 1 -1], [1 -1 1], [1 1 1]) = -4,

%e a(4) = det([-1 1 1 -1], [-1 1 -1 1], [0 0 1 0], [1 1 1 1]) = 4.

%e ...

%o (SageMath)

%o def binary_trig(n):

%o N=2*n+1

%o print(N,"th root of unity")

%o T=matrix(ZZ,n,n)

%o for ll in range(n):

%o l=ll*2+1

%o for kk in range(n):

%o k=kk+1

%o T[min(l*n%N,N-l*n%N)-1,min(k*l%N,N-k*l%N)-1]=sign(RDF(sin(k*l*pi/N)))

%o s=matrix(RDF,n,1)

%o for k in range(n):

%o s[k,0]=sin((k+1)*pi/N)

%o for k in range(n):

%o if (T*s)[k,0]<0:

%o #if prod(T[k])==0:

%o T[k]=-T[k]

%o return det(T)

%Y Related to A007318 by the continued fraction.

%K sign

%O 1,2

%A _David V. Ingerman_, Oct 15 2016