login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360243
Number of integer partitions of n where the parts have the same mean as the distinct parts.
14
1, 1, 2, 3, 4, 4, 8, 6, 11, 11, 17, 13, 28, 19, 32, 40, 48, 39, 71, 55, 103, 105, 110, 105, 197, 170, 195, 237, 319, 257, 462, 341, 515, 543, 584, 784, 1028, 761, 973, 1153, 1606, 1261, 2137, 1611, 2368, 2815, 2575, 2591, 4393, 3798, 4602, 4663, 5777, 5121
OFFSET
0,3
EXAMPLE
The a(1) = 1 through a(8) = 11 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (11111) (51) (61) (62)
(222) (421) (71)
(321) (1111111) (431)
(2211) (521)
(111111) (2222)
(3221)
(3311)
(11111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Mean[#]==Mean[Union[#]]&]], {n, 0, 30}]
CROSSREFS
For multiplicities instead of distinct parts we have A360068.
The complement is counted by A360242, ranks A360246.
For median instead of mean we have A360245, complement A360244.
These partitions have ranks A360247.
Cf. A360250 and A360251, ranks A360252 and A360253.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A058398 counts partitions by mean, also A327482.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A116608 counts partitions by number of distinct parts.
A360071 counts partitions by number of parts and number of distinct parts.
A360241 counts partitions whose distinct parts have integer mean.
Sequence in context: A240219 A028298 A047966 * A360683 A317085 A236543
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 04 2023
STATUS
approved