OFFSET
1,3
COMMENTS
A rooted partition of n is an integer partition of n - 1.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1000
EXAMPLE
The a(7) = 8 rooted twice-partitions: (5), (11111), (2)(2), (2)(11), (11)(2), (11)(11), (1)(1)(1), ()()()()()().
The a(15) = 20 rooted twice-partitions:
()()()()()()()()()()()()()(),
(1)(1)(1)(1)(1)(1)(1), (111111)(111111), (1111111111111),
(111111)(222), (222)(111111), (222)(222),
(111111)(33), (222)(33), (33)(111111), (33)(222), (33)(33),
(111111)(6), (222)(6), (33)(6), (6)(111111), (6)(222), (6)(33), (6)(6),
(13).
MATHEMATICA
Table[If[n===1, 1, Sum[If[d===n-1, 1, DivisorSigma[0, (n-1)/d-1]]^d, {d, Divisors[n-1]}]], {n, 50}]
PROG
(PARI) a(n)=if(n==1, 1, sumdiv(n-1, d, if(d==n-1, 1, numdiv((n-1)/d-1)^d))) \\ Andrew Howroyd, Aug 26 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 26 2018
STATUS
approved