OFFSET
1,3
COMMENTS
A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..500
FORMULA
O.g.f.: x * Product_{n > 0} 1/(1 - P(n-1) x^n) where P = A000041.
EXAMPLE
The a(5) = 8 rooted twice-partitions: ((3)), ((21)), ((111)), ((2)()), ((11)()), ((1)(1)), ((1)()()), (()()()()).
The a(6) = 15 rooted twice-partitions:
(4), (31), (22), (211), (1111),
(3)(), (21)(), (111)(), (2)(1), (11)(1),
(2)()(), (11)()(), (1)(1)(),
(1)()()(),
()()()()().
MATHEMATICA
nn=30;
ser=x*Product[1/(1-PartitionsP[n-1]x^n), {n, nn}];
Table[SeriesCoefficient[ser, {x, 0, n}], {n, nn}]
PROG
(PARI) seq(n)={Vec(1/prod(k=1, n-1, 1 - numbpart(k-1)*x^k + O(x^n)))} \\ Andrew Howroyd, Aug 29 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 22 2018
STATUS
approved