login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301477
T(n,k) = Sum_{j=0..n-k} H(n,j)*2^k with H(n,k) = binomial(n,k)* hypergeom([-k/2, 1/2-k/2], [2-k+n], 4), for 0 <= k <= n, triangle read by rows.
1
1, 2, 2, 5, 6, 4, 13, 18, 16, 8, 35, 52, 56, 40, 16, 96, 150, 180, 160, 96, 32, 267, 432, 560, 568, 432, 224, 64, 750, 1246, 1708, 1904, 1680, 1120, 512, 128, 2123, 3600, 5152, 6160, 6048, 4736, 2816, 1152, 256, 6046, 10422, 15432, 19488, 20736, 18240, 12864, 6912, 2560, 512
OFFSET
0,2
EXAMPLE
1
2, 2
5, 6, 4
13, 18, 16, 8
35, 52, 56, 40, 16
96, 150, 180, 160, 96, 32
267, 432, 560, 568, 432, 224, 64
750, 1246, 1708, 1904, 1680, 1120, 512, 128
2123, 3600, 5152, 6160, 6048, 4736, 2816, 1152, 256
MAPLE
H := (n, k) -> binomial(n, k)*hypergeom([-k/2, 1/2-k/2], [2-k+n], 4):
T := (n, k) -> add(simplify(H(n, j)*2^k), j=0..n-k):
seq(seq(T(n, k), k=0..n), n=0..9);
MATHEMATICA
s={}; For[n=0, n<13, n++, For[k=0, k<n+1, k++, AppendTo[s, (2^k)*(GegenbauerC[n-k-1, -n, -1/2]+GegenbauerC[n-k, -n, -1/2]+KroneckerDelta[n])]]]; s (* Detlef Meya, Oct 03 2023 *)
CROSSREFS
Row sums are A126932, first column A005773, diagonal A000079.
Cf. A301475 (general case).
Sequence in context: A367211 A250303 A368554 * A261895 A112573 A233740
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 22 2018
STATUS
approved