OFFSET
0,2
FORMULA
a(n) = -(sqrt(2)*(-4)^n/n!)*d^(n+1)[arcsinh(1/x), 1] where d^n[f(x), x0] denotes the n-th derivative of f at x = x0.
D-finite with recurrence: a(n) = ((24*n + 56)*a(n+1) - (8*n + 22)*a(n+2) + (n + 3)*a(n+3)) / (32*n + 64).
MAPLE
MATHEMATICA
RecurrenceTable[{a[n] == ((24 n + 56) a[n + 1] - (8 n + 22) a[n + 2] + (n + 3) a[n + 3]) / (32 n + 64), a[0] == 1, a[1] == 6, a[2] == 26}, a, {n, 0, 25}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Apr 06 2018
STATUS
approved