login
A307306
Self-composition of the sum of divisors function (A000203).
2
1, 6, 26, 101, 366, 1294, 4400, 14706, 48362, 157583, 507714, 1621211, 5138804, 16204008, 50867068, 159004142, 494928072, 1534638702, 4743180908, 14622202326, 44978845086, 138074363360, 422979847404, 1293101281551, 3945553307665, 12018461150832, 36556888102402
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Divisor Function
FORMULA
G.f.: g(g(x)), where g(x) = Sum_{k>=1} k*x^k/(1 - x^k) is the g.f. of A000203.
MATHEMATICA
g[x_] := g[x] = Sum[k x^k/(1 - x^k), {k, 1, 27}]; a[n_] := a[n] = SeriesCoefficient[g[g[x]], {x, 0, n}]; Table[a[n], {n, 27}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 01 2019
STATUS
approved