login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301473
Summarize the square of the previous term (digits in increasing order), starting with a(1) = 1.
0
1, 11, 2112, 10441516, 201132133526171819, 304143342566674839, 20318223344546471849, 20512233541526676879, 30515253342586374819, 104110223244576374829, 50311243448516576849, 205110263344526372839, 60516213246536272889, 40218263245576271839, 40514223942556273849
OFFSET
1,2
COMMENTS
From 32nd term the sequence goes into a cycle of 2159 terms.
EXAMPLE
a(1) = 1 and 1^2 = 1 ('one 1') then a(2) = 11;
11^2 = 121 ('two 1, one 2') then a(3) = 2112. And so on.
MAPLE
P:=proc(q, h) local a, b, c, j, k, n; a:=h; print(a);
for n from 1 to q do a:=convert(a^2, base, 10);
b:=0; for k from 0 to 9 do c:=0; for j from 1 to nops(a) do
if a[j]=k then c:=c+1; fi; od;
if c>0 then b:=b*10^(ilog10(c*10+k)+1)+c*10+k; fi; od;
a:=b; print(a); od; end: P(10, 1); # Paolo P. Lava, Mar 22 2018
CROSSREFS
Cf. A005151.
Sequence in context: A265876 A078271 A272617 * A087403 A085878 A238633
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Mar 22 2018
STATUS
approved