login
A301473
Summarize the square of the previous term (digits in increasing order), starting with a(1) = 1.
0
1, 11, 2112, 10441516, 201132133526171819, 304143342566674839, 20318223344546471849, 20512233541526676879, 30515253342586374819, 104110223244576374829, 50311243448516576849, 205110263344526372839, 60516213246536272889, 40218263245576271839, 40514223942556273849
OFFSET
1,2
COMMENTS
From 32nd term the sequence goes into a cycle of 2159 terms.
EXAMPLE
a(1) = 1 and 1^2 = 1 ('one 1') then a(2) = 11;
11^2 = 121 ('two 1, one 2') then a(3) = 2112. And so on.
MAPLE
P:=proc(q, h) local a, b, c, j, k, n; a:=h; print(a);
for n from 1 to q do a:=convert(a^2, base, 10);
b:=0; for k from 0 to 9 do c:=0; for j from 1 to nops(a) do
if a[j]=k then c:=c+1; fi; od;
if c>0 then b:=b*10^(ilog10(c*10+k)+1)+c*10+k; fi; od;
a:=b; print(a); od; end: P(10, 1); # Paolo P. Lava, Mar 22 2018
CROSSREFS
Cf. A005151.
Sequence in context: A265876 A078271 A272617 * A087403 A085878 A238633
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Mar 22 2018
STATUS
approved