The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005151 Summarize the previous term (digits in increasing order), starting with a(1) = 1. (Formerly M4779) 45
 1, 11, 21, 1112, 3112, 211213, 312213, 212223, 114213, 31121314, 41122314, 31221324, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) = 21322314 for n > 12. - Reinhard Zumkeller, Jan 25 2014 The digits of each term a(n) are a permutation of those of the corresponding term A063850(n). - Chayim Lowen, Jul 16 2015 REFERENCES C. Fleenor, "A litteral sequence", Solution to Problem 2562, Journal of Recreational Mathematics, vol. 31 No. 4 pp. 307 2002-3 Baywood NY. Problem in J. Recreational Math., 30 (4) (1999-2000), p. 309. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Colin Barker, Table of n, a(n) for n = 1..1000 V. Bronstein and A. S. Fraenkel, On a curious property of counting sequences, Amer. Math. Monthly, 101 (1994), 560-563. Onno M. Cain and Sela T. Enin, Inventory Loops (i.e. Counting Sequences) have Pre-period 2 max S_1 + 60, arXiv:2004.00209 [math.NT], 2020. X. Gourdon and B. Salvy, Effective asymptotics of linear recurrences with rational coefficients, Discrete Mathematics, vol. 153, no. 1-3, 1996, pages 145-163. James Henle, Is (some) mathematics poetry?, Journal of Humanistic Mathematics 1:1 (2011), pp. 94-100. Madras Math's Amazing Number Facts, Fact No. 13 Madras Math, Descriptive Number Trevor Scheopner, The Cyclic Nature (and Other Intriguing Properties) of Descriptive Numbers, Princeton Undergraduate Mathematics Journal, Issue 1, Article 4. L. J. Upton, Letter to N. J. A. Sloane, Jan 8 1991. Index entries for linear recurrences with constant coefficients, signature (1). FORMULA a(n+1) = A047842(a(n)). - M. F. Hasler, Feb 25 2018 G.f.: x*(1 + 10*x + 10*x^2 + 1091*x^3 + 2000*x^4 + 208101*x^5 + 101000*x^6 - 99990*x^7 - 98010*x^8 + 31007101*x^9 + 10001000*x^10 - 9900990*x^11 - 9899010*x^12) / (1 - x). - Colin Barker, Aug 23 2018 EXAMPLE The term after 312213 is obtained by saying "Two 1's, two 2's, two 3's", which gives 21-22-23, i.e., 212223. MAPLE P:=proc(q, h) local a, b, c, j, k, n; a:=h; print(a); for n from 1 to q do a:=convert(a, base, 10); b:=0; for k from 0 to 9 do c:=0; for j from 1 to nops(a) do if a[j]=k then c:=c+1; fi; od; if c>0 then b:=b*10^(ilog10(c*10+k)+1)+c*10+k; fi; od; a:=b; print(a); od; end: P(10, 1); # Paolo P. Lava, Mar 21 2018 MATHEMATICA RunLengthEncode[x_List] := (Through[{Length, First}[ #1]] &) /@ Split[ Sort[x]]; LookAndSay[n_, d_:1] := NestList[ Flatten[ RunLengthEncode[ # ]] &, {d}, n - 1]; F[n_] := LookAndSay[n, 1][[n]]; Table[ FromDigits[ F[n]], {n, 25}] (* Robert G. Wilson v, Jan 22 2004 *) a[1] = 1; a[n_] := a[n] = FromDigits[Reverse /@ Sort[Tally[a[n-1] // IntegerDigits], #1[[1]] < #2[[1]]&] // Flatten]; Array[a, 26] (* Jean-François Alcover, Jan 25 2016 *) PROG (Haskell) import Data.List (group, sort, transpose) a005151 n = a005151_list !! (n-1) a005151_list = 1 : f [1] :: [Integer] where    f xs = (read \$ concatMap show ys) : f ys where           ys = concat \$ transpose [map length zss, map head zss]           zss = group \$ sort xs -- Reinhard Zumkeller, Jan 25 2014 (PARI) say(n) = {digs = digits(n); d = vecsort(digs, , 8); s = ""; for (k=1, #d, nbk = #select(x->x==d[k], digs); s = concat(s, Str(nbk)); s = concat(s, d[k]); ); eval(s); } lista(nn) = {print1(n = 1, ", "); for (k=1, nn, m = say(n); print1(m, ", "); n = m; ); } \\ Michel Marcus, Feb 12 2016 (PARI) a(n, show_all=1, a=1)={for(i=2, n, show_all&&print1(a", "); a=A047842(a)); a} \\ M. F. Hasler, Feb 25 2018 (PARI) Vec(x*(1 + 10*x + 10*x^2 + 1091*x^3 + 2000*x^4 + 208101*x^5 + 101000*x^6 - 99990*x^7 - 98010*x^8 + 31007101*x^9 + 10001000*x^10 - 9900990*x^11 - 9899010*x^12) / (1 - x) + O(x^40)) \\ Colin Barker, Aug 23 2018 (Python) from itertools import accumulate, groupby, repeat def summarize(n, _):   return int("".join(str(len(list(g)))+k for k, g in groupby(sorted(str(n))))) def aupton(nn): return list(accumulate(repeat(1, nn+1), summarize)) print(aupton(25)) # Michael S. Branicky, Jan 11 2021 CROSSREFS Cf. A005150, A047842. See A083671 for another version. Cf. A023989, A118628, A060857. Sequence in context: A092806 A138485 A006711 * A098155 A098154 A007890 Adjacent sequences:  A005148 A005149 A005150 * A005152 A005153 A005154 KEYWORD nonn,base,easy,changed AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 03:36 EST 2021. Contains 340195 sequences. (Running on oeis4.)