The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005148 Sequence of coefficients arising in connection with a rapidly converging series for Pi. (Formerly M5290) 10
 0, 1, 47, 2488, 138799, 7976456, 467232200, 27736348480, 1662803271215, 100442427373480, 6103747246289272, 372725876150863808, 22852464771010647496, 1405886026610765892544, 86741060172969340021952 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The paper by Newman and Shanks has an appendix by Don Zagier which eventually leads to an efficient recursive algorithm for the series itself, whereas the main paper treats each term in isolation, which is enormously slower. Using Zagier's appendix one may compute 1000 terms in 25 seconds running PARI/GP on a 500MHz Alpha. - David Broadhurst, Jun 17 2002 (see second version of PARI code here) Conjecture: The following 2 definitions give the same sequence: (1) numbers k such that 8^m is the highest power of 2 dividing a(k), and (2) numbers k such that k has exactly (m+1) 1's in its binary representation. A018900 is the special case m=1. - Benoit Cloitre, Jun 22 2002, edited by Hugo Pfoertner, Aug 21 2021 Conjecture: There are polynomials P_k(x) such that P_k(m) = the constant term of j_m(tau)^k where j_m is modular for the Hecke group G(lambda_m), j_3 is the Klein invariant j with constant term 744, and P_k(x) = a(k+1) times a product of monic polynomials. - Barry Brent, Nov 25 2022 REFERENCES F. Beukers, Letter to D. Shanks, Mar 13 1984 J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 195; see Exercise 6(a). D. Shanks, Solved and unsolved problems in number theory, Chelsea NY, 1985, p. 255-7,276 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..555 (first 101 terms from T. D. Noe) Barry Brent, Folder : "current draft" Barry Brent, On the constant terms of certain meromorphic modular forms for Hecke groups, arXiv:2212.12515 [math.NT], 2022. Barry Brent, On the Constant Terms of Certain Laurent Series, Preprints (2023) 2023061164. M. Newman and D. Shanks, On a sequence arising in series for pi, Math. Comp., 42 (1984), 199-217. D. Shanks, Letter to N. J. A. Sloane, date unknown. Also includes some notes from N. J. A. Sloane. Index entries for sequences related to the number Pi FORMULA a(n) = (1/24) * coefficient of x^n in Product_{k>=1} (1+x^(2k-1))^(24n). Asymptotically (D. Zagier): a(n) = C*(64^n)/sqrt(n)*(1 - a/n + b/n^2 + ...) with C = (sqrt(Pi)/12)*Gamma(3/4)^2/Gamma(1/4)^2 = 0.0168732651....; a = 6*Gamma(3/4)^4/Gamma(1/4)^4 = 0.078300067..., b = 60*Gamma(3/4)^8/Gamma(1/4)^8 - 1/128 = 0.002405668.... - Benoit Cloitre, Jun 22 2002; numerical value of constant "a" corrected by Vaclav Kotesovec, Jul 28 2013 Alternative expressions for these constants: C = Pi^(5/2)/(6*Gamma(1/4)^4), a = 24*Pi^4/Gamma(1/4)^8, b = 960*Pi^8/Gamma(1/4)^16 - 1/128. - Vaclav Kotesovec, Jul 28 2013 A076657(n) = Sum_{i=0..n} binomial(2*n-2*i, n-i)^3 a(i) = (1/24)*binomial(2*n, n)*(16^n-binomial(2*n, n)^2) (Shanks and Beukers). - Ralf Stephan, Oct 24 2002 Expansion of ((Pi / (2 K(q)))^2 / (1 - 2*k(q)^2) - 1) / 24 in powers of (k'(q) * k(q) / 4)^2. [Borwein and Borwein, 6(a)(i)] - Michael Somos, Jul 06 2014 Expansion of ((Pi / (2 K(q)))^2 / (1 + k(q)^2) - 1) / 24 in powers of (k'(q)^-2 * k(q) / 4)^2. [Borwein and Borwein, 6(a)(ii)] - Michael Somos, Jul 06 2014 EXAMPLE G.f. = x + 47*x^2 + 2488*x^3 + 138799*x^4 + 7976456*x^5 + 467232200*x^6 + ... MATHEMATICA a[n_] := a[n]=(Binomial[2n, n](16^n-Binomial[2n, n]^2))/24-Sum[Binomial[2n-2i, n-i]^3a[i], {i, 0, n-1}] a[ n_] := If[ n < 1, 0, SeriesCoefficient[ ComposeSeries[ Series[ ((Pi / (2 EllipticK[m]))^2 / (1 - 2 m) - 1) / 24, {m, 0, n}], InverseSeries[ Series[ (1 - m) m/16, {m, 0, n}]]], {m, 0, n}]]; (* Michael Somos, Jul 06 2014 *) a[ n_] := If[ n < 1, 0, SeriesCoefficient[ ComposeSeries[ Series[ ((Pi / (2 EllipticK[m]))^2 / (1 + m) - 1) / 24, {m, 0, n}], InverseSeries[ Series[ -(1 - m)^-2 m/16, {m, 0, n}]]], {m, 0, n}]]; (* Michael Somos, Jul 06 2014 *) PROG (PARI) {a(n) = if( n<1, 0, polcoeff( prod( k=1, (n+1)\2, 1 + x^(2*k - 1), 1 + x *O(x^n))^(24*n), n) / 24)}; (PARI) {nt=1000; a=[1]; b=[1]; d=1; e=0; g=0; print(1); for(n=2, nt, c=48*(a[n-1]+g)+128*(d-32*e); e=d; d=c; i=(n-1)\2; g=12*if(n%2==0, a[n/2]^2)+24*sum(j=1, i, a[j]*a[n-j]); h=12*if(n%2==0, b[n/2]^2)+24*sum(j=1, i, b[j]*b[n-j]); f=(c+5*h)/n^2-g; a=concat(a, f); b=concat(b, n*f); print(f))} /* Broadhurst 2002 */ (PARI) {a(n)=if(n<1, 0, va[n])} {b(n)=n*a(n)} {doit(nt)= local(c, d, e, g); va=vector(nt); va[1]=1; d=1; e=0; g=0; for(n=2, nt, c=48*(a(n-1)+g)+128*(d-32*e); e=d; d=c; g=12*if(n%2==0, a(n/2)^2)+24*sum(j=1, (n-1)\2, a(j)*a(n-j)); va[n]=(c+5*(12*if(n%2==0, b(n/2)^2)+24*sum(j=1, (n-1)\2, b(j)*b(n-j))))/n^2-g; )}; /* Michael Somos, Nov 05 2002 */ (PARI) {a(n) = local(an, cb); if( n<1, 0, an = cb = vector(n, i, binomial(2*i, i)); an[1]=1; for(j=2, n, an[j] = (cb[j]*16^j - cb[j]^3) / 24 - sum(i=1, j-1, cb[j-i]^3*an[i])); an[n])}; /* Michael Somos, Mar 09 2004 */ CROSSREFS Cf. A005149, A076657, A018900. CF. A060236 (reduced mod 3). Sequence in context: A009991 A052463 A327770 * A123798 A104069 A334180 Adjacent sequences: A005145 A005146 A005147 * A005149 A005150 A005151 KEYWORD nonn,easy,nice AUTHOR Simon Plouffe and N. J. A. Sloane EXTENSIONS More terms from Michael Somos, Nov 24 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 02:54 EDT 2023. Contains 365714 sequences. (Running on oeis4.)