login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334180
Number of dimer tilings of a 2*n x 8 Moebius strip.
2
1, 47, 4271, 434657, 46069729, 4974089647, 541714928431, 59235304882177, 6489376893239297, 711542422708907311, 78049793235712789423, 8562932336475599244257, 939528644055272842890721, 103089508033934831216777903, 11311669427350891385087911471
OFFSET
0,2
FORMULA
a(n)^2 = 4^n * Resultant(U_{2*n}(x/2), T_{8}(i*x/2)), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1).
MATHEMATICA
a[n_] := 2^n * Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevT[8, I*x/2], x]]; Array[a, 15, 0] (* Amiram Eldar, May 04 2021 *)
PROG
(PARI) {a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(8, 1, I*x/2)))}
CROSSREFS
Column 4 of A103997.
Column 8 of A334178.
Sequence in context: A005148 A123798 A104069 * A194617 A217229 A217230
KEYWORD
nonn,changed
AUTHOR
Seiichi Manyama, Apr 17 2020
STATUS
approved