login
A334183
Number of dimer tilings of a 2*n x 14 Moebius strip.
2
1, 843, 2226851, 7009284232, 23313951730593, 79684937704014787, 276820366633357961907, 971684488369988888850993, 3433809783046699326165318697, 12187832583695135440208385490411, 43381711462091769247169214041784216, 154696550169813236996441805153918153313
OFFSET
0,2
FORMULA
a(n)^2 = 4^n * Resultant(U_{2*n}(x/2), T_{14}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1).
MATHEMATICA
a[n_] := 2^n * Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevT[14, I*x/2], x]]; Array[a, 12, 0] (* Amiram Eldar, May 04 2021 *)
PROG
(PARI) {a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(14, 1, I*x/2)))}
CROSSREFS
Column 7 of A103997.
Column 14 of A334178.
Sequence in context: A158403 A114359 A038013 * A078144 A071320 A338628
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 17 2020
STATUS
approved