|
|
A334181
|
|
Number of dimer tilings of a 2*n x 10 Moebius strip.
|
|
2
|
|
|
1, 123, 34276, 10894561, 3625549353, 1234496016491, 425588878897051, 147716667776449068, 51459452422736225401, 17962375573820654607091, 6276640725138515237851803, 2194525820018749279915303361, 767517569389298359121889024076, 268477550040900162034429991254323
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n)^2 = 4^n * Resultant(U_{2*n}(x/2), T_{10}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1).
|
|
MATHEMATICA
|
a[n_] := 2^n * Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevT[10, I*x/2], x]]; Array[a, 14, 0] (* Amiram Eldar, May 04 2021 *)
|
|
PROG
|
(PARI) {a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(10, 1, I*x/2)))}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|