

A338628


a(n) is the smallest number k such that n consecutive integers starting at k have the same number of square divisors (A046951).


0



1, 1, 1, 844, 3624, 22020, 671346, 8870024, 264459172, 463239475, 1407472722
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


LINKS

Table of n, a(n) for n=1..11.
Index entries for sequences related to divisors of numbers


EXAMPLE

844 has 2 square divisors {1, 4}, 845 has 2 square divisors {1, 169}, 846 has 2 square divisors {1, 9} and 847 has 2 square divisors {1, 121}. These the first 4 consecutive numbers with the same number of square divisors, so a(4) = 844.


MATHEMATICA

Do[find = 0; k = 0; While[find == 0, k++; If[Length[Union[Table[Length[Select[Divisors[j], IntegerQ[Sqrt[#]] &]], {j, k, k + n  1}]]] == 1, find = 1; Print[k]]], {n, 1, 7}]


PROG

(PARI) isok(n, k) = #Set(apply(x>sumdiv(x, d, issquare(d)), vector(n, i, k+i1))) == 1;
a(n) = my(k=1); while(! isok(n, k), k++); k; \\ Michel Marcus, Nov 05 2020


CROSSREFS

Cf. A006558, A045983, A045984, A046951, A324593, A324594.
Sequence in context: A334183 A078144 A071320 * A323253 A160212 A188296
Adjacent sequences: A338625 A338626 A338627 * A338629 A338630 A338631


KEYWORD

nonn,more


AUTHOR

Ilya Gutkovskiy, Nov 04 2020


EXTENSIONS

a(8)a(11) from Amiram Eldar, Nov 04 2020


STATUS

approved



