login
A338628
a(n) is the smallest number k such that n consecutive integers starting at k have the same number of square divisors (A046951).
2
1, 1, 1, 844, 3624, 22020, 671346, 8870024, 264459172, 463239475, 1407472722, 108494875170, 12385053656370, 145065154350545
OFFSET
1,4
EXAMPLE
844 has 2 square divisors {1, 4}, 845 has 2 square divisors {1, 169}, 846 has 2 square divisors {1, 9} and 847 has 2 square divisors {1, 121}. These are the first 4 consecutive numbers with the same number of square divisors, so a(4) = 844.
MATHEMATICA
Do[find = 0; k = 0; While[find == 0, k++; If[Length[Union[Table[Length[Select[Divisors[j], IntegerQ[Sqrt[#]] &]], {j, k, k + n - 1}]]] == 1, find = 1; Print[k]]], {n, 1, 7}]
PROG
(PARI) isok(n, k) = #Set(apply(x->sumdiv(x, d, issquare(d)), vector(n, i, k+i-1))) == 1;
a(n) = my(k=1); while(! isok(n, k), k++); k; \\ Michel Marcus, Nov 05 2020
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Ilya Gutkovskiy, Nov 04 2020
EXTENSIONS
a(8)-a(11) from Amiram Eldar, Nov 04 2020
a(12)-a(14) from Martin Ehrenstein, Jul 19 2023
STATUS
approved