login
A188296
Central element of a series of 5 successive nonsquarefree numbers.
4
846, 1682, 2890, 3626, 5048, 10926, 14750, 15850, 17406, 19942, 22022, 22023, 22626, 23274, 24649, 24650, 25774, 29350, 30250, 30925, 30926, 33174, 36702, 37250, 38726, 39446, 40474, 45374, 47674, 47675, 47726, 47826, 48374, 49490, 54586, 55026, 55449, 55450, 57122, 57123, 58474, 58850
OFFSET
1,1
COMMENTS
Each of a(n), a(n)-1, a(n)-2, a(n)+1, a(n)+2 has at least one square divisor.
LINKS
FORMULA
a(n) = A078144(n) + 2. - Amiram Eldar, Feb 09 2021
EXAMPLE
846 = 2*3^2*47, 846 - 1 = 5*13^2, 846 - 2 = 2^2*211, 846 + 1 = 7*11^2, 846 + 2 = 2^4*53.
MATHEMATICA
Select[Range[1, 100000], !SquareFreeQ[#] &&!SquareFreeQ[#-1] &&!SquareFreeQ[#+1] &&!SquareFreeQ[#-2] &&!SquareFreeQ[#+2]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved