login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160212
Positive numbers y such that y^2 is of the form x^2+(x+953)^2 with integer x.
3
845, 953, 1093, 3977, 4765, 5713, 23017, 27637, 33185, 134125, 161057, 193397, 781733, 938705, 1127197, 4556273, 5471173, 6569785, 26555905, 31888333, 38291513, 154779157, 185858825, 223179293, 902119037, 1083264617, 1300784245
OFFSET
1,1
COMMENTS
(-116, a(1)) and (A129975(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+953)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (969+124*sqrt(2))/953 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1947891+1218490*sqrt(2))/953^2 for n mod 3 = 1.
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=845, a(2)=953, a(3)=1093, a(4)=3977, a(5)=4765, a(6)=5713.
G.f.: (1-x)*(845+1798*x+2891*x^2+1798*x^3+845*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 953*A001653(k) for k >= 1.
EXAMPLE
(-116, a(1)) = (-116, 845) is a solution: (-116)^2+(-116+953)^2 = 13456+700569 = 714025 = 845^2.
(A129975(1), a(2)) = (0, 953) is a solution: 0^2+(0+953)^2 = 908209 = 953^2.
(A129975(3), a(4)) = (2295, 3977) is a solution: 2295^2+(2295+953)^2 = 5267025+10549504 = 15816529 = 3977^2.
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {845, 953, 1093, 3977, 4765, 5713}, 30] (* Harvey P. Dale, Feb 18 2024 *)
PROG
(PARI) {forstep(n=-116, 10000000, [3, 1], if(issquare(2*n^2+1906*n+908209, &k), print1(k, ", ")))}
CROSSREFS
Cf. A129975, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160213 (decimal expansion of (969+124*sqrt(2))/953), A160214 (decimal expansion of (1947891+1218490*sqrt(2))/953^2).
Sequence in context: A071320 A338628 A323253 * A188296 A187861 A280484
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, May 18 2009
STATUS
approved