login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160209
Positive numbers y such that y^2 is of the form x^2+(x+937)^2 with integer x.
3
673, 937, 1685, 2353, 4685, 9437, 13445, 27173, 54937, 78317, 158353, 320185, 456457, 922945, 1866173, 2660425, 5379317, 10876853, 15506093, 31352957, 63394945, 90376133, 182738425, 369492817, 526750705, 1065077593, 2153561957
OFFSET
1,1
COMMENTS
(-385, a(1)) and (A129974(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+937)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (1179+506*sqrt(2))/937 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (933747+224782*sqrt(2))/937^2 for n mod 3 = 1.
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=673, a(2)=937, a(3)=1685, a(4)=2353, a(5)=4685, a(6)=9437.
G.f.: (1-x)*(673+1610*x+3295*x^2+1610*x^3+673*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 937*A001653(k) for k >= 1.
EXAMPLE
(-385, a(1)) = (-385, 673) is a solution: (-385)^2+(-385+937)^2 = 148225+304704 = 452929 = 673^2.
(A129974(1), a(2)) = (0, 937) is a solution: 0^2+(0+937)^2 = 877969 = 937^2.
(A129974(3), a(4)) = (1128, 2353) is a solution: 1128^2+(1128+937)^2 = 1272384+4264225 = 5536609 = 2353^2.
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {673, 937, 1685, 2353, 4685, 9437}, 30] (* Harvey P. Dale, Dec 25 2017 *)
PROG
(PARI) {forstep(n=-388, 10000000, [3, 1], if(issquare(2*n^2+1874*n+877969, &k), print1(k, ", ")))}
CROSSREFS
Cf. A129974, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160210 (decimal expansion of (1179+506*sqrt(2))/937), A160211 (decimal expansion of (933747+224782*sqrt(2))/937^2).
Sequence in context: A047728 A297123 A335254 * A234117 A171266 A267818
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, May 18 2009
STATUS
approved