login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive numbers y such that y^2 is of the form x^2+(x+937)^2 with integer x.
3

%I #4 Dec 25 2017 14:19:58

%S 673,937,1685,2353,4685,9437,13445,27173,54937,78317,158353,320185,

%T 456457,922945,1866173,2660425,5379317,10876853,15506093,31352957,

%U 63394945,90376133,182738425,369492817,526750705,1065077593,2153561957

%N Positive numbers y such that y^2 is of the form x^2+(x+937)^2 with integer x.

%C (-385, a(1)) and (A129974(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+937)^2 = y^2.

%C lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).

%C lim_{n -> infinity} a(n)/a(n-1) = (1179+506*sqrt(2))/937 for n mod 3 = {0, 2}.

%C lim_{n -> infinity} a(n)/a(n-1) = (933747+224782*sqrt(2))/937^2 for n mod 3 = 1.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,6,0,0,-1).

%F a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=673, a(2)=937, a(3)=1685, a(4)=2353, a(5)=4685, a(6)=9437.

%F G.f.: (1-x)*(673+1610*x+3295*x^2+1610*x^3+673*x^4) / (1-6*x^3+x^6).

%F a(3*k-1) = 937*A001653(k) for k >= 1.

%e (-385, a(1)) = (-385, 673) is a solution: (-385)^2+(-385+937)^2 = 148225+304704 = 452929 = 673^2.

%e (A129974(1), a(2)) = (0, 937) is a solution: 0^2+(0+937)^2 = 877969 = 937^2.

%e (A129974(3), a(4)) = (1128, 2353) is a solution: 1128^2+(1128+937)^2 = 1272384+4264225 = 5536609 = 2353^2.

%t LinearRecurrence[{0,0,6,0,0,-1},{673,937,1685,2353,4685,9437},30] (* _Harvey P. Dale_, Dec 25 2017 *)

%o (PARI) {forstep(n=-388, 10000000, [3, 1], if(issquare(2*n^2+1874*n+877969, &k), print1(k, ",")))}

%Y Cf. A129974, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160210 (decimal expansion of (1179+506*sqrt(2))/937), A160211 (decimal expansion of (933747+224782*sqrt(2))/937^2).

%K nonn

%O 1,1

%A _Klaus Brockhaus_, May 18 2009