OFFSET
1,1
COMMENTS
(-185, a(1)) and (A129857(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+857)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (907+210*sqrt(2))/857 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1208787+678878*sqrt(2))/857^2 for n mod 3 = 1.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0, 0, 6, 0, 0, -1).
FORMULA
a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=697, a(2)=857, a(3)=1117, a(4)=3065, a(5)=4285, a(6)=6005.
G.f.: (1-x)*(697+1554*x+2671*x^2+1554*x^3+697*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 857*A001653(k) for k >= 1.
EXAMPLE
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {697, 857, 1117, 3065, 4285, 6005}, 50] (* G. C. Greubel, May 14 2018 *)
PROG
(PARI) {forstep(n=-188, 10000000, [3, 1], if(issquare(2*n^2 +1714*n +734449, &k), print1(k, ", ")))}
(PARI) x='x+O('x^30); Vec((1-x)*(697+1554*x+2671*x^2+1554*x^3 +697*x^4 )/(1-6*x^3+x^6)) \\ G. C. Greubel, May 14 2018
(Magma) I:=[697, 857, 1117, 3065, 4285, 6005]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..40]]; // G. C. Greubel, May 14 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, May 18 2009
STATUS
approved