login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160203
Positive numbers y such that y^2 is of the form x^2+(x+809)^2 with integer x.
3
641, 809, 1105, 2741, 4045, 5989, 15805, 23461, 34829, 92089, 136721, 202985, 536729, 796865, 1183081, 3128285, 4644469, 6895501, 18232981, 27069949, 40189925, 106269601, 157775225, 234244049, 619384625, 919581401, 1365274369
OFFSET
1,1
COMMENTS
(-200, a(1)) and (A123654(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+809)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (873+232*sqrt(2))/809 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (989043+524338*sqrt(2))/809^2 for n mod 3 = 1.
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=641, a(2)=809, a(3)=1105, a(4)=2741, a(5)=4045, a(6)=5989.
G.f.: (1-x)*(641+1450*x+2555*x^2+1450*x^3+641*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 809*A001653(k) for k >= 1.
EXAMPLE
(-200, a(1)) = (-200, 641) is a solution: (-200)^2+(-200+809)^2 = 40000+370881 = 410881 = 641^2.
(A123654(1), a(2)) = (0, 809) is a solution: 0^2+(0+809)^2 = 654481 = 809^2.
(A123654(3), a(4)) = (1491, 2741) is a solution: 1491^2+(1491+809)^2 = 2223081+5290000 = 7513081 = 2741^2.
PROG
(PARI) {forstep(n=-200, 10000000, [3, 1], if(issquare(2*n^2+1618*n+654481, &k), print1(k, ", ")))}
CROSSREFS
Cf. A123654, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160204 (decimal expansion of (873+232*sqrt(2))/809), A160205 (decimal expansion of (989043+524338*sqrt(2))/809^2).
Sequence in context: A252426 A256777 A252425 * A251840 A252433 A252434
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, May 18 2009
STATUS
approved