login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111105
Largest member z of a triple 0<x<y<z such that z^2-y^2, z^2-x^2 and y^2-x^2 are perfect squares.
2
697, 925, 1073, 1105, 1394, 1850, 2091, 2146, 2165, 2210, 2665, 2775, 2788, 3219, 3277, 3315, 3485, 3700, 3965, 4181, 4182, 4225, 4292, 4330, 4420, 4453, 4625, 4879, 5330, 5365, 5525, 5550, 5576, 6005, 6273, 6438, 6475, 6495, 6554, 6630, 6970, 7085
OFFSET
1,1
COMMENTS
Subset of A024409. If only primitive triples with gcd(x,y,z)=1 are admitted, the sequence reduces to A137559.
LINKS
R. A. Beuregard and E. R. Suryanarayan, Pythagorean Boxes, Math. Mag. vol 74 no 3 (2001) pp 222-227.
J. Fricke, On Heron simplices and integer embedding, arXiv:math/0112239 [math.NT], 2001.
R. Hartshorne and Ronald van Luijk, Non-Euclidean Pythagorean triples, a problem of Euler and rational points on K3 surfaces, arXiv:math/0606700 [math.NT], 2006.
EXAMPLE
a(1)=697 represents the (z,y,x)-triples (697,185,153) and (697,680,672).
a(4)=1105 represents the triples (1105,520,264), (1105,561,264), (1105,1073,952) and (1105,1073,975).
CROSSREFS
Cf. A137559.
Sequence in context: A069330 A218156 A160206 * A137559 A306097 A185377
KEYWORD
nonn
AUTHOR
R. J. Mathar, Apr 20 2008
STATUS
approved