login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185377
Product of exactly two distinct primes congruent to 1 mod 8 (A007519).
2
697, 1241, 1513, 1649, 1921, 2329, 2993, 3281, 3649, 3961, 3977, 4097, 4369, 4633, 4777, 5321, 5617, 5729, 6001, 6497, 6817, 6953, 7081, 7361, 7633, 7769, 7913, 8249, 8633, 8857, 9553, 9673, 9809, 9881, 10001, 10057, 10081, 10217, 10489, 10537
OFFSET
1,1
COMMENTS
Subset of semiprimes A001358. Subset of {d = p_1 * p_2 * ... * p_m where p_i == 1 (mod 8), 1 <= i <= m are distinct primes} as occurs in Wei, p. 2.
LINKS
Dasheng Wei, On the equation x^2-Dy^2=n, Feb 18, 2011.
FORMULA
{A007519(i) * A007519(j) for i < j}.
{A000040(i) * A000040(j) for i < j, and A000040(i) in A017077 and A000040(j) in A017077}.
EXAMPLE
10001 is in this sequence because 10001 = 73 * 137 = A007519(3) * A007519(7).
MATHEMATICA
p = Select[Prime[Range[200]], Mod[#, 8] == 1 &]; Sort[Reap[Do[n=p[[i]] p[[j]]; If[n <= p[[1]]p[[-1]], Sow[n]], {i, 2, Length[p]}, {j, i - 1}]][[2, 1]]]
PROG
(PARI) list(lim)=my(v=List(), P=List(), t); forprime(p=2, lim\17, if(p%8==1, listput(P, p))); for(i=2, #P, my(p=P[i]); for(j=1, i-1, t=p*P[j]; if(t>lim, break); listput(v, t))); Set(v) \\ Charles R Greathouse IV, Jul 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Feb 20 2011
STATUS
approved