login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185376
Number of binary necklaces of 2n beads for which a cut exists producing a palindrome.
2
2, 3, 6, 9, 20, 34, 72, 129, 272, 516, 1056, 2050, 4160, 8200, 16512, 32769, 65792, 131088, 262656, 524292, 1049600, 2097184, 4196352, 8388610, 16781312, 33554496, 67117056, 134217736, 268451840, 536871040, 1073774592, 2147483649
OFFSET
1,1
COMMENTS
These are the values of A185333 for even n.
Conjecture: a(n) = 2^(n-1) + 2^((n-2^t)/(2^(t+1))), where t = number of factors of 2 in n.
LINKS
FORMULA
a(n) = A185333(2n).
MATHEMATICA
f[n_] := Block[{k = IntegerExponent[n, 2]}, 2^n/2 + 2^((n - 2^k)/(2^(k + 1)))]; Array[f, 32] (* Robert G. Wilson v, Aug 08 2011 *)
PROG
(Python)
def a185333(n):
if n%2: return 2**((n + 1)//2)
k=bin(n - 1)[2:].count('1') - bin(n)[2:].count('1')
return 2**(n//2 - 1) + 2**((n//2 - 2**k)//(2**(k + 1)))
def a(n): return a185333(2*n)
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 29 2017, after the formula
CROSSREFS
Cf. A185333.
Sequence in context: A246565 A320169 A293606 * A321484 A065536 A351261
KEYWORD
nonn
AUTHOR
Tony Bartoletti, Feb 20 2011
STATUS
approved