login
A320169
Number of balanced enriched p-trees of weight n.
9
1, 2, 3, 6, 9, 20, 31, 70, 114, 243, 415, 961, 1603, 3564, 6559, 14913, 26630, 60037, 110160, 248859, 458445, 1001190, 1882350, 4220358, 7765303, 16822107, 32307240, 70081784, 133716083, 291788153, 561823990, 1230204229, 2396185727, 5176454708, 10220127290
OFFSET
1,2
COMMENTS
An enriched p-tree of weight n is either the number n itself or a finite sequence of enriched p-trees whose weights are weakly decreasing and sum to n.
A tree is balanced if all leaves have the same height.
LINKS
EXAMPLE
The a(1) = 1 through a(6) = 20 balanced enriched p-trees:
1 2 3 4 5 6
(11) (21) (22) (32) (33)
(111) (31) (41) (42)
(211) (221) (51)
(1111) (311) (222)
((11)(11)) (2111) (321)
(11111) (411)
((21)(11)) (2211)
((111)(11)) (3111)
(21111)
(111111)
((21)(21))
((22)(11))
((31)(11))
((111)(21))
((21)(111))
((211)(11))
((111)(111))
((1111)(11))
((11)(11)(11))
MATHEMATICA
eptrs[n_]:=Prepend[Join@@Table[Tuples[eptrs/@p], {p, Rest[IntegerPartitions[n]]}], n];
Table[Length[Select[eptrs[n], SameQ@@Length/@Position[#, _Integer]&]], {n, 12}]
PROG
(PARI) seq(n)={my(p=x/(1-x) + O(x*x^n), q=0); while(p, q+=p; p = 1/prod(k=1, n, 1 - polcoef(p, k)*x^k + O(x*x^n)) - 1 - p); Vec(q)} \\ Andrew Howroyd, Oct 26 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 07 2018
EXTENSIONS
Terms a(16) and beyond from Andrew Howroyd, Oct 26 2018
STATUS
approved