OFFSET
1,2
COMMENTS
A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root.
Also the number of balanced phylogenetic rooted trees on n distinct labels.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..200
EXAMPLE
The a(1) = 1 through a(4) = 18 rooted trees:
(1) (12) (123) (1234)
((1)(2)) ((1)(23)) ((1)(234))
((2)(13)) ((12)(34))
((3)(12)) ((13)(24))
((1)(2)(3)) ((14)(23))
((2)(134))
((3)(124))
((4)(123))
((1)(2)(34))
((1)(3)(24))
((1)(4)(23))
((2)(3)(14))
((2)(4)(13))
((3)(4)(12))
((1)(2)(3)(4))
(((1)(2))((3)(4)))
(((1)(3))((2)(4)))
(((1)(4))((2)(3)))
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
gug[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[gug/@mtn]], {mtn, Select[sps[m], Length[#]>1&]}], m];
Table[Length[Select[gug[Range[n]], SameQ@@Length/@Position[#, _Integer]&]], {n, 9}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
b(n, k)={my(u=vector(n), v=vector(n)); u[1]=k; u=EulerT(u); while(u, v+=u; u=EulerT(u)-u); v}
seq(n)={my(M=Mat(vectorv(n, k, b(n, k)))); vector(n, k, sum(i=1, k, binomial(k, i)*(-1)^(k-i)*M[i, k]))} \\ Andrew Howroyd, Oct 26 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 06 2018
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Oct 26 2018
STATUS
approved