OFFSET
0,4
COMMENTS
From Gus Wiseman, Jul 31 2018 and Feb 06 2020: (Start)
a(n) is the number of lone-child-avoiding rooted identity trees whose leaves form an integer partition of n. For example, the following are the a(6) = 13 lone-child-avoiding rooted identity trees whose leaves form an integer partition of 6.
6,
(15),
(24),
(123), (1(23)), (2(13)), (3(12)),
(1(14)),
(1(1(13))),
(12(12)), (1(2(12))), (2(1(12))),
(1(1(1(12)))).
(End)
LINKS
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 3.045141208159736483720243229947630323380565686... and c = 0.2004129296838557718008171812000512670126... - Vaclav Kotesovec, Aug 27 2018
EXAMPLE
: a(3) = 2: : a(4) = 3: :
: o o : o o o :
: / \ /|\ : / \ / \ /( )\ :
: o N N N N : o N o N N N N N :
: ( ) : / \ /|\ :
: N N : o N N N N :
: : ( ) :
: : N N :
From Gus Wiseman, Feb 06 2020: (Start)
The a(2) = 1 through a(6) = 13 unlabeled rooted phylogenetic semi-identity trees:
(oo) (ooo) (oooo) (ooooo) (oooooo)
((o)(oo)) ((o)(ooo)) ((o)(oooo)) ((o)(ooooo))
((o)((o)(oo))) ((oo)(ooo)) ((oo)(oooo))
((o)((o)(ooo))) ((o)(oo)(ooo))
((oo)((o)(oo))) (((o)(oo))(ooo))
((o)((o)((o)(oo)))) ((o)((o)(oooo)))
((o)((oo)(ooo)))
((oo)((o)(ooo)))
((o)(oo)((o)(oo)))
((o)((o)((o)(ooo))))
((o)((oo)((o)(oo))))
((oo)((o)((o)(oo))))
((o)((o)((o)((o)(oo)))))
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1)*binomial(a(i), j), j=0..n/i)))
end:
a:= n-> `if`(n=0, 0, 1+b(n, n-1)):
seq(a(n), n=0..30);
MATHEMATICA
b[0, _] = 1; b[_, _?NonPositive] = 0;
b[n_, i_] := b[n, i] = Sum[b[n-i*j, i-1]*Binomial[a[i], j], {j, 0, n/i}];
a[0] = 0; a[n_] := a[n] = 1 + b[n, n-1];
Table[a[n], {n, 0, 31}] (* Jean-François Alcover, May 03 2019, from Maple *)
ursit[n_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]], UnsameQ@@#&], {ptn, Select[IntegerPartitions[n], Length[#]>1&]}], n];
Table[Length[ursit[n]], {n, 10}] (* Gus Wiseman, Feb 06 2020 *)
CROSSREFS
The locally disjoint case is A316694.
KEYWORD
nonn,eigen
AUTHOR
Alois P. Heinz, Jun 18 2018
STATUS
approved