login
A300660
Number of unlabeled rooted phylogenetic trees with n (leaf-) nodes such that for each inner node all children are either leaves or roots of distinct subtrees.
37
0, 1, 1, 2, 3, 6, 13, 30, 72, 182, 467, 1222, 3245, 8722, 23663, 64758, 178459, 494922, 1380105, 3867414, 10884821, 30756410, 87215419, 248117618, 707952902, 2025479210, 5809424605, 16700811214, 48113496645, 138884979562, 401645917999, 1163530868090
OFFSET
0,4
COMMENTS
From Gus Wiseman, Jul 31 2018 and Feb 06 2020: (Start)
a(n) is the number of lone-child-avoiding rooted identity trees whose leaves form an integer partition of n. For example, the following are the a(6) = 13 lone-child-avoiding rooted identity trees whose leaves form an integer partition of 6.
6,
(15),
(24),
(123), (1(23)), (2(13)), (3(12)),
(1(14)),
(1(1(13))),
(12(12)), (1(2(12))), (2(1(12))),
(1(1(1(12)))).
(End)
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 3.045141208159736483720243229947630323380565686... and c = 0.2004129296838557718008171812000512670126... - Vaclav Kotesovec, Aug 27 2018
EXAMPLE
: a(3) = 2: : a(4) = 3: :
: o o : o o o :
: / \ /|\ : / \ / \ /( )\ :
: o N N N N : o N o N N N N N :
: ( ) : / \ /|\ :
: N N : o N N N N :
: : ( ) :
: : N N :
From Gus Wiseman, Feb 06 2020: (Start)
The a(2) = 1 through a(6) = 13 unlabeled rooted phylogenetic semi-identity trees:
(oo) (ooo) (oooo) (ooooo) (oooooo)
((o)(oo)) ((o)(ooo)) ((o)(oooo)) ((o)(ooooo))
((o)((o)(oo))) ((oo)(ooo)) ((oo)(oooo))
((o)((o)(ooo))) ((o)(oo)(ooo))
((oo)((o)(oo))) (((o)(oo))(ooo))
((o)((o)((o)(oo)))) ((o)((o)(oooo)))
((o)((oo)(ooo)))
((oo)((o)(ooo)))
((o)(oo)((o)(oo)))
((o)((o)((o)(ooo))))
((o)((oo)((o)(oo))))
((oo)((o)((o)(oo))))
((o)((o)((o)((o)(oo)))))
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1)*binomial(a(i), j), j=0..n/i)))
end:
a:= n-> `if`(n=0, 0, 1+b(n, n-1)):
seq(a(n), n=0..30);
MATHEMATICA
b[0, _] = 1; b[_, _?NonPositive] = 0;
b[n_, i_] := b[n, i] = Sum[b[n-i*j, i-1]*Binomial[a[i], j], {j, 0, n/i}];
a[0] = 0; a[n_] := a[n] = 1 + b[n, n-1];
Table[a[n], {n, 0, 31}] (* Jean-François Alcover, May 03 2019, from Maple *)
ursit[n_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]], UnsameQ@@#&], {ptn, Select[IntegerPartitions[n], Length[#]>1&]}], n];
Table[Length[ursit[n]], {n, 10}] (* Gus Wiseman, Feb 06 2020 *)
KEYWORD
nonn,eigen
AUTHOR
Alois P. Heinz, Jun 18 2018
STATUS
approved