OFFSET
1,3
COMMENTS
A rooted tree is lone-child-avoiding if every non-leaf node has at least two branches. It is locally disjoint if no branch overlaps any other (unequal) branch of the same root. It is an identity tree if no branch appears multiple times under the same root.
LINKS
EXAMPLE
The a(7) = 28 rooted trees:
7,
(16),
(25),
(1(15)),
(34),
(1(24)), (2(14)), (4(12)), (124),
(1(1(14))),
(3(13)),
(2(23)),
(1(1(23))), (1(2(13))), (1(3(12))), (1(123)), (2(1(13))), (3(1(12))), (12(13)), (13(12)),
(1(1(1(13)))),
(2(2(12))),
(1(1(2(12)))), (1(2(1(12)))), (1(12(12))), (2(1(1(12)))), (12(1(12))),
(1(1(1(1(12))))).
Missing from this list but counted by A300660 are ((12)(13)) and ((12)(1(12))).
MATHEMATICA
disjointQ[u_]:=Apply[And, Outer[#1==#2||Intersection[#1, #2]=={}&, u, u, 1], {0, 1}];
nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]], And[UnsameQ@@#, disjointQ[#]]&], {ptn, Rest[IntegerPartitions[n]]}], {n}];
Table[Length[nms[n]], {n, 10}]
CROSSREFS
The semi-identity tree version is A212804.
Not requiring local disjointness gives A300660.
The non-identity tree version is A316696.
This is the case of A331686 where all leaves are singletons.
Rooted identity trees are A004111.
Locally disjoint rooted identity trees are A316471.
Lone-child-avoiding locally disjoint rooted trees are A331680.
Locally disjoint enriched identity p-trees are A331684.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 10 2018
EXTENSIONS
a(21)-a(23) from Robert Price, Sep 16 2018
Updated with corrected terminology by Gus Wiseman, Feb 06 2020
STATUS
approved