OFFSET
1,5
COMMENTS
LINKS
David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
EXAMPLE
The a(1) = 1 through a(9) = 16 trees (empty column indicated by dot):
o . (oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo) (oooooooo)
(o(oo)) (o(ooo)) (o(oooo)) (o(ooooo)) (o(oooooo))
(oo(oo)) (oo(ooo)) (oo(oooo)) (oo(ooooo))
(ooo(oo)) (ooo(ooo)) (ooo(oooo))
((oo)(oo)) (oooo(oo)) (oooo(ooo))
(o(o(oo))) (o(o(ooo))) (ooooo(oo))
(o(oo)(oo)) ((ooo)(ooo))
(o(oo(oo))) (o(o(oooo)))
(oo(o(oo))) (o(oo(ooo)))
(o(ooo(oo)))
(oo(o(ooo)))
(oo(oo)(oo))
(oo(oo(oo)))
(ooo(o(oo)))
(o((oo)(oo)))
(o(o(o(oo))))
MATHEMATICA
disjointQ[u_]:=Apply[And, Outer[#1==#2||Intersection[#1, #2]=={}&, u, u, 1], {0, 1}];
strut[n_]:=If[n==1, {{}}, Select[Join@@Function[c, Union[Sort/@Tuples[strut/@c]]]/@Rest[IntegerPartitions[n-1]], disjointQ]];
Table[Length[strut[n]], {n, 10}]
CROSSREFS
The enriched version is A316696.
The Matula-Goebel numbers of these trees are A331871.
The non-locally disjoint version is A001678.
These trees counted by number of leaves are A316697.
The semi-lone-child-avoiding version is A331872.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 25 2020
STATUS
approved