OFFSET
1,5
COMMENTS
This is a weaker condition than achirality (cf. A167865).
A rooted tree is series-reduced if every non-leaf node has at least two branches.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..500
FORMULA
a(1) = 1; a(2) = 0; a(n > 2) = 1 + Sum_{k = 2..n-2} floor((n-1)/k) * a(k).
EXAMPLE
The a(3) = 1 through a(8) = 9 rooted trees:
(oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo)
(o(oo)) (o(ooo)) (o(oooo)) (o(ooooo))
(oo(oo)) (oo(ooo)) (oo(oooo))
(ooo(oo)) (ooo(ooo))
((oo)(oo)) (oooo(oo))
(o(o(oo))) (o(o(ooo)))
(o(oo)(oo))
(o(oo(oo)))
(oo(o(oo)))
MATHEMATICA
saum[n_]:=Sum[If[DeleteCases[ptn, 1]=={}, 1, saum[DeleteCases[ptn, 1][[1]]]], {ptn, Select[IntegerPartitions[n-1], And[Length[#]!=1, SameQ@@DeleteCases[#, 1]]&]}];
Array[saum, 20]
PROG
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=3, n, v[n] = 1 + sum(k=2, n-2, (n-1)\k*v[k])); v} \\ Andrew Howroyd, Oct 26 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 08 2018
STATUS
approved