login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093830
Expansion of q^(-1/2)(eta(q^2)eta(q^10)/(eta(q)eta(q^5)))^2 in powers of q.
0
1, 2, 3, 6, 9, 16, 26, 38, 58, 84, 124, 178, 249, 348, 478, 660, 896, 1202, 1610, 2132, 2822, 3706, 4827, 6270, 8093, 10420, 13346, 17008, 21608, 27332, 34490, 43350, 54286, 67806, 84404, 104828, 129810, 160274, 197440, 242584, 297429, 363802
OFFSET
0,2
COMMENTS
Euler transform of period 10 sequence [2,0,2,0,4,0,2,0,2,0,...].
G.f. A(x) satisfies 0=f(xA(x)^2,x^2A(x^2)^2) where f(u,v)=u^2-v-8uv-16uv^2.
FORMULA
G.f.: (Product_{k>0} (1-x^(10k-5))(1-x^(2k-1)))^-2.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (8 * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[1/((1-x^(10*k-5)) * (1-x^(2*k-1)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
PROG
(PARI) a(n)=local(X); if(n<0, 0, X=x+x*O(x^n); polcoeff((eta(X^2)*eta(X^10)/eta(X)/eta(X^5))^2, n))
(PARI) a(n)=if(n<0, 0, polcoeff((1/prod(k=1, (n+5)\10, 1-x^(10*k-5), 1+x*O(x^n))/prod(k=1, (n+1)\2, 1-x^(2*k-1), 1+x*O(x^n)))^2, n))
CROSSREFS
Sequence in context: A275548 A260710 A359994 * A320268 A118033 A048810
KEYWORD
nonn
AUTHOR
Michael Somos, Apr 17 2004
STATUS
approved