login
A275548
Number of compositions of n if only the order of the odd numbers matter.
2
1, 1, 2, 3, 6, 9, 16, 25, 43, 68, 113, 181, 298, 479, 781, 1260, 2048, 3308, 5364, 8672, 14048, 22720, 36782, 59502, 96305, 155807, 252136, 407943, 660113, 1068056, 1728210, 2796266, 4524531, 7320797, 11845394, 19166191, 31011673, 50177864, 81189642, 131367506
OFFSET
0,3
COMMENTS
The number of partitions of n = 2k with only even numbers is p(k) = A000041(k). The number of compositions of n with only odd numbers is F(n) = the n-th Fibonacci number = A000045(n). Enumerating a(n) is therefore a sum of products of partition numbers and Fibonacci numbers.
LINKS
FORMULA
a(2k+1) = Sum_{j=0..k} p(j)*F(2k + 1 - 2j), where p(j) = A000041(j), the number of partitions of j, and F(j) = A000045(j), the j-th Fibonacci number.
a(2k) = p(k) + Sum_{j=0..(k-1)} p(j)*F(2k - 2j).
a(2k+1) = a(2k) + a(2k-1).
a(2k) = a(2k-1) + a(2k-2) + p(k) - p(k-1).
G.f.: 1/(1 - x - x^2) * Product_{n>=2} 1/(1 - x^(2*n)). - Peter Bala, Aug 03 2016 [corrected by Vaclav Kotesovec, Jun 02 2018]
a(n) ~ c * phi^n, where c = 1 / (sqrt(5) * QPochhammer[1/phi^2]) = 0.92890318501026782066... and phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 02 2018
EXAMPLE
The compositions enumerated by a(6) = 16 are (6),(5,1),(1,5),(4,2)=(2,4), (3,3), (4,1,1)=(1,4,1)=(1,1,4), (2,3,1)=(3,2,1)=(3,1,2), (2,1,3)=(1,2,3)=(1,3,2), (2,2,2), (3,1,1,1),(1,3,1,1),(1,1,3,1),(1,1,1,3), (2,2,1,1)=(2,1,2,1)=(2,1,1,2)=(1,2,1,2)=(1,1,2,2)=(1,2,2,1), (2,1,1,1,1)=(1,2,1,1,1)=(1,1,2,1,1)=(1,1,1,2,1)=(1,1,1,1,2), (1,1,1,1,1,1).
The compositions enumerated by a(5) = 9 are (5), (4,1)=(1,4), (3,2)=(2,3), (3,1,1), (1,3,1), (1,1,3), (2,2,1)=(2,1,2)=(1,2,2), (2,1,1,1)=(1,2,1,1)=(1,1,2,1)=(1,1,1,2), (1,1,1,1,1).
MAPLE
b:= proc(n, i, p) option remember; (t-> `if`(n=0, p!,
`if`(i<1, 0, add(b(n-i*j, i-1, p+`if`(t, j, 0))/
`if`(t, j, 0)!, j=0..n/i))))(i::odd)
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 03 2016
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 1, 0, Sum[b[n - i*j, i - 1, p + If[#, j, 0]]/If[#, j, 0]!, {j, 0, n/i}]]]&[OddQ[i]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, May 21 2018, after Alois P. Heinz *)
nmax = 40; CoefficientList[Series[1/(1 - x - x^2) * Product[1/(1 - x^(2*k)), {k, 2, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 02 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gregory L. Simay, Aug 01 2016
STATUS
approved