login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275548
Number of compositions of n if only the order of the odd numbers matter.
2
1, 1, 2, 3, 6, 9, 16, 25, 43, 68, 113, 181, 298, 479, 781, 1260, 2048, 3308, 5364, 8672, 14048, 22720, 36782, 59502, 96305, 155807, 252136, 407943, 660113, 1068056, 1728210, 2796266, 4524531, 7320797, 11845394, 19166191, 31011673, 50177864, 81189642, 131367506
OFFSET
0,3
COMMENTS
The number of partitions of n = 2k with only even numbers is p(k) = A000041(k). The number of compositions of n with only odd numbers is F(n) = the n-th Fibonacci number = A000045(n). Enumerating a(n) is therefore a sum of products of partition numbers and Fibonacci numbers.
LINKS
FORMULA
a(2k+1) = Sum_{j=0..k} p(j)*F(2k + 1 - 2j), where p(j) = A000041(j), the number of partitions of j, and F(j) = A000045(j), the j-th Fibonacci number.
a(2k) = p(k) + Sum_{j=0..(k-1)} p(j)*F(2k - 2j).
a(2k+1) = a(2k) + a(2k-1).
a(2k) = a(2k-1) + a(2k-2) + p(k) - p(k-1).
G.f.: 1/(1 - x - x^2) * Product_{n>=2} 1/(1 - x^(2*n)). - Peter Bala, Aug 03 2016 [corrected by Vaclav Kotesovec, Jun 02 2018]
a(n) ~ c * phi^n, where c = 1 / (sqrt(5) * QPochhammer[1/phi^2]) = 0.92890318501026782066... and phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 02 2018
EXAMPLE
The compositions enumerated by a(6) = 16 are (6),(5,1),(1,5),(4,2)=(2,4), (3,3), (4,1,1)=(1,4,1)=(1,1,4), (2,3,1)=(3,2,1)=(3,1,2), (2,1,3)=(1,2,3)=(1,3,2), (2,2,2), (3,1,1,1),(1,3,1,1),(1,1,3,1),(1,1,1,3), (2,2,1,1)=(2,1,2,1)=(2,1,1,2)=(1,2,1,2)=(1,1,2,2)=(1,2,2,1), (2,1,1,1,1)=(1,2,1,1,1)=(1,1,2,1,1)=(1,1,1,2,1)=(1,1,1,1,2), (1,1,1,1,1,1).
The compositions enumerated by a(5) = 9 are (5), (4,1)=(1,4), (3,2)=(2,3), (3,1,1), (1,3,1), (1,1,3), (2,2,1)=(2,1,2)=(1,2,2), (2,1,1,1)=(1,2,1,1)=(1,1,2,1)=(1,1,1,2), (1,1,1,1,1).
MAPLE
b:= proc(n, i, p) option remember; (t-> `if`(n=0, p!,
`if`(i<1, 0, add(b(n-i*j, i-1, p+`if`(t, j, 0))/
`if`(t, j, 0)!, j=0..n/i))))(i::odd)
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 03 2016
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 1, 0, Sum[b[n - i*j, i - 1, p + If[#, j, 0]]/If[#, j, 0]!, {j, 0, n/i}]]]&[OddQ[i]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, May 21 2018, after Alois P. Heinz *)
nmax = 40; CoefficientList[Series[1/(1 - x - x^2) * Product[1/(1 - x^(2*k)), {k, 2, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 02 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gregory L. Simay, Aug 01 2016
STATUS
approved