OFFSET
1,3
COMMENTS
Enter 1 into center position of the spiral. Repeat: Add to the number in the present position the numbers in all those already filled positions that are horizontally or vertically adjacent to it, go to next position of the spiral and enter the sum into it.
a(1) = 1, a(n) = a(n-1) + Sum_{i < n-1 and a(i) is adjacent to a(n-1)} a(i).
Here only four positions are considered adjacent, eight however in A094767.
Clockwise and counterclockwise construction of the spiral result in the same sequence.
LINKS
Klaus Brockhaus, Table of n, a(n) for n = 1..729
EXAMPLE
Clockwise constructed spiral begins
.
13770--22272--36058--58355--94455
|
|
8502 16-----25-----42-----68
| | |
| | |
5252 9 1------1 110
| | | |
| | | |
3241 6------3------2 179
| |
| |
2005---1236----763----470----291
.
where
a(2) = a(1) = 1,
a(3) = a(2) + a(1) = 2,
a(4) = a(3) + a(2) = 3,
a(5) = a(4) + a(3) + a(1) = 6,
a(6) = a(5) + a(4) = 9,
a(7) = a(6) + a(5) + a(1) = 16.
PROG
(PARI) {m=5; h=2*m-1; A=matrix(h, h); print1(A[m, m]=1, ", "); pj=m; pk=m; T=[[1, 0], [0, -1], [ -1, 0], [0, 1]]; for(n=1, (h-2)^2-1, g=sqrtint(n); r=(g+g%2)\2; q=4*r^2; d=n-q; if(n<=q-2*r, j=d+3*r; k=r, if(n<=q, j=r; k=-d-r, if(n<=q+2*r, j=r-d; k=-r, j=-r; k=d-3*r))); j=j+m; k=k+m; s=A[pj, pk]; for(c=1, 4, v=[pj, pk]; v+=T[c]; s=s+A[v[1], v[2]]); A[j, k]=s; print1(s, ", "); pj=j; pk=k)} \\ Klaus Brockhaus, Aug 27 2008
CROSSREFS
KEYWORD
nonn
AUTHOR
Yasutoshi Kohmoto, Jun 10 2004
EXTENSIONS
Edited and extended beyond a(14) by Klaus Brockhaus, Aug 27 2008
STATUS
approved