login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062114
a(n) = 2*Fibonacci(n) - (1 - (-1)^n)/2.
11
0, 1, 2, 3, 6, 9, 16, 25, 42, 67, 110, 177, 288, 465, 754, 1219, 1974, 3193, 5168, 8361, 13530, 21891, 35422, 57313, 92736, 150049, 242786, 392835, 635622, 1028457, 1664080, 2692537, 4356618, 7049155, 11405774, 18454929, 29860704, 48315633, 78176338, 126491971
OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..4785 (first 401 terms from Harry J. Smith)
FORMULA
A bistable recurrence; Fibonacci with a grain of salt: a(0)=0; a(1)=1; a(n) = a(n-1) + a(n-2) + (1 + (-1)^n)/2.
a(n+1) = Sum_{k=0..n} binomial(n-floor(k/2), floor(k/2)). - Benoit Cloitre, May 05 2005
Starting with 1, equals row sums of triangle A134513. - Gary W. Adamson, Oct 28 2007
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4), n > 3. - Harvey P. Dale, Nov 02 2011
G.f.: x*(1+x-x^2)/( (1-x)*(1+x)*(1-x-x^2) ). - R. J. Mathar, Aug 12 2012
a(n) = -(-1)^n * a(-n) for all n in Z. - Michael Somos, Oct 17 2018
EXAMPLE
a(4) = a(3) + a(2) + (1+1)/2 = 3 + 2 + 1 = 6.
G.f. = x + 2*x^2 + 3*x^3 + 6*x^4 + 9*x^5 + 16*x^6 + 25*x^7 + ... - Michael Somos, Oct 17 2018
MAPLE
A062114 := proc(n)
2*combinat[fibonacci](n)-(1-(-1)^n)/2 ;
end proc: # R. J. Mathar, Aug 12 2012
# second Maple program:
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|-1|2|1>>^n.<<[$0..3][]>>)[1$2]:
seq(a(n), n=0..50); # Alois P. Heinz, Jul 01 2018
MATHEMATICA
Join[{a=0, b=1}, Table[If[EvenQ[a], c=a+b+1, c=a+b]; a=b; b=c, {n, 0, 5!}]](* Vladimir Joseph Stephan Orlovsky, Jan 10 2011 *)
Table[2Fibonacci[n]-(1-(-1)^n)/2, {n, 0, 40}] (* or *) LinearRecurrence[ {1, 2, -1, -1}, {0, 1, 2, 3}, 41] (* Harvey P. Dale, Nov 02 2011 *)
PROG
(PARI) { h=-1; g=1; for (n=0, 400, f=g + h; h=g; g=f; write("b062114.txt", n, " ", 2*f - (1 - (-1)^n)/2) ) } \\ Harry J. Smith, Aug 01 2009
(PARI) x='x+O('x^30); concat([0], Vec(x*(1+x-x^2)/((1-x)*(1+x)*(1-x-x^2) ))) \\ G. C. Greubel, Oct 16 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x-x^2)/((1-x)*(1+x)*(1-x-x^2)))); // G. C. Greubel, Oct 16 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Olivier Gérard, Jun 05 2001
EXTENSIONS
Definition corrected by Harry J. Smith, Aug 01 2009
STATUS
approved