login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A062116
a(n) = 2^n mod 17.
4
1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13
OFFSET
0,2
COMMENTS
Period 8.
REFERENCES
I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
FORMULA
From R. J. Mathar, Apr 13 2010: (Start)
a(n) = a(n-1) - a(n-4) + a(n-5).
G.f.: (1 + x + 2*x^2 + 4*x^3 + 9*x^4)/((1-x)*(1+x^4)). (End)
a(n) = 17 - a(n+4) = a(n+8) for all n in Z. - Michael Somos, Oct 17 2018
EXAMPLE
a(5) = 32 mod 17 = 15.
MATHEMATICA
Mod[#, 17]&/@(2^Range[0, 100]) (* Harvey P. Dale, Mar 06 2011 *)
PROG
(PARI) a(n) = { lift(Mod(2, 17)^n) } \\ Harry J. Smith, Aug 01 2009
(Sage) [power_mod(2, n, 17) for n in range(0, 87)] # Zerinvary Lajos, Nov 03 2009
(Magma) [2^n mod 17: n in [0..100]]; // G. C. Greubel, Oct 16 2018
(GAP) a:=List([0..70], n->PowerMod(2, n, 17));; Print(a); # Muniru A Asiru, Jan 29 2019
CROSSREFS
Sequence in context: A309571 A210023 A301807 * A362896 A316749 A008381
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Jun 06 2001
STATUS
approved