Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Dec 16 2023 16:55:29
%S 0,1,2,3,6,9,16,25,42,67,110,177,288,465,754,1219,1974,3193,5168,8361,
%T 13530,21891,35422,57313,92736,150049,242786,392835,635622,1028457,
%U 1664080,2692537,4356618,7049155,11405774,18454929,29860704,48315633,78176338,126491971
%N a(n) = 2*Fibonacci(n) - (1 - (-1)^n)/2.
%H Alois P. Heinz, <a href="/A062114/b062114.txt">Table of n, a(n) for n = 0..4785</a> (first 401 terms from Harry J. Smith)
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-1,-1).
%F A bistable recurrence; Fibonacci with a grain of salt: a(0)=0; a(1)=1; a(n) = a(n-1) + a(n-2) + (1 + (-1)^n)/2.
%F a(n+1) = Sum_{k=0..n} binomial(n-floor(k/2), floor(k/2)). - _Benoit Cloitre_, May 05 2005
%F Starting with 1, equals row sums of triangle A134513. - _Gary W. Adamson_, Oct 28 2007
%F a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4), n > 3. - _Harvey P. Dale_, Nov 02 2011
%F G.f.: x*(1+x-x^2)/( (1-x)*(1+x)*(1-x-x^2) ). - _R. J. Mathar_, Aug 12 2012
%F a(n) = -(-1)^n * a(-n) for all n in Z. - _Michael Somos_, Oct 17 2018
%e a(4) = a(3) + a(2) + (1+1)/2 = 3 + 2 + 1 = 6.
%e G.f. = x + 2*x^2 + 3*x^3 + 6*x^4 + 9*x^5 + 16*x^6 + 25*x^7 + ... - _Michael Somos_, Oct 17 2018
%p A062114 := proc(n)
%p 2*combinat[fibonacci](n)-(1-(-1)^n)/2 ;
%p end proc: # _R. J. Mathar_, Aug 12 2012
%p # second Maple program:
%p a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|-1|2|1>>^n.<<[$0..3][]>>)[1$2]:
%p seq(a(n), n=0..50); # _Alois P. Heinz_, Jul 01 2018
%t Join[{a=0,b=1},Table[If[EvenQ[a],c=a+b+1,c=a+b];a=b;b=c,{n,0,5!}]](* _Vladimir Joseph Stephan Orlovsky_, Jan 10 2011 *)
%t Table[2Fibonacci[n]-(1-(-1)^n)/2,{n,0,40}] (* or *) LinearRecurrence[ {1,2,-1,-1},{0,1,2,3},41] (* _Harvey P. Dale_, Nov 02 2011 *)
%o (PARI) { h=-1; g=1; for (n=0, 400, f=g + h; h=g; g=f; write("b062114.txt", n, " ", 2*f - (1 - (-1)^n)/2) ) } \\ _Harry J. Smith_, Aug 01 2009
%o (PARI) x='x+O('x^30); concat([0], Vec(x*(1+x-x^2)/((1-x)*(1+x)*(1-x-x^2) ))) \\ _G. C. Greubel_, Oct 16 2018
%o (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x-x^2)/((1-x)*(1+x)*(1-x-x^2)))); // _G. C. Greubel_, Oct 16 2018
%Y Cf. A000045, A052952, A134513.
%K easy,nonn
%O 0,3
%A _Olivier Gérard_, Jun 05 2001
%E Definition corrected by _Harry J. Smith_, Aug 01 2009