login
A062111
Upper-right triangle resulting from binomial transform calculation for nonnegative integers.
16
0, 1, 1, 4, 3, 2, 12, 8, 5, 3, 32, 20, 12, 7, 4, 80, 48, 28, 16, 9, 5, 192, 112, 64, 36, 20, 11, 6, 448, 256, 144, 80, 44, 24, 13, 7, 1024, 576, 320, 176, 96, 52, 28, 15, 8, 2304, 1280, 704, 384, 208, 112, 60, 32, 17, 9, 5120, 2816, 1536, 832, 448, 240, 128, 68, 36, 19, 10
OFFSET
0,4
COMMENTS
From Philippe Deléham, Apr 15 2007: (Start)
This triangle can be found in the Laisant reference in the following form:
.......................5...11..
...................4...9...20..
...............3...7..16...36..
...........2...5..12..28.......
.......1...3...8..20..48.......
...0...1...4..12..32..80....... (End)
Triangle A152920 reversed. - Philippe Deléham, Apr 21 2009
LINKS
C.-A. Laisant, Sur les tableaux de sommes - Nouvelles applications, Compt. Rendus de l'Association Francaise pour l'Avancement des Sciences, Aout 04 1893, pp. 206-216 (table given on p. 212).
FORMULA
A(n, k) = A(n, k-1) + A(n+1, k) if k > n with A(n, n) = n.
A(n, k) = (k+n)*2^(k-n-1) if k >= n.
T(2*n, n) = 3*n*2^(n-1) = 3*A001787(n). - Philippe Deléham, Apr 21 2009
From G. C. Greubel, Sep 28 2022: (Start)
T(n, k) = 2^(n-k-1)*(n+k) for 0 <= k <= n, n >= 0.
T(m*n, n) = 2^((m-1)*n-1)*(m+1)*A001477(n), m >= 1.
T(2*n-1, n-1) = A130129(n-1).
T(2*n+1, n-1) = 12*A001787(n).
Sum_{k=0..n} T(n, k) = A058877(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = 3*A073371(n-2), n >= 2.
T(n, k) = A152920(n, n-k). (End)
EXAMPLE
As a lower triangle (T(n, k)):
0;
1, 1;
4, 3, 2;
12, 8, 5, 3;
32, 20, 12, 7, 4;
80, 48, 28, 16, 9, 5;
192, 112, 64, 36, 20, 11, 6;
448, 256, 144, 80, 44, 24, 13, 7;
MATHEMATICA
Table[2^(n-k-1)*(n+k), {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 28 2022 *)
PROG
(Magma) [2^(n-k-1)*(n+k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 28 2022
(SageMath)
def A062111(n, k): return 2^(n-k-1)*(n+k)
flatten([[A062111(n, k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Sep 28 2022
CROSSREFS
Rows include (essentially) A001787, A001792, A034007, A045623, A045891.
Diagonals include (essentially) A001477, A005408, A008586, A008598, A017113.
Column sums are A058877.
Sequence in context: A065367 A333780 A033882 * A181596 A182142 A033881
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, May 30 2001
STATUS
approved