login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159697
a(0)=9, a(n) = 2*a(n-1) + 2^(n-1) for n > 0.
6
9, 19, 40, 84, 176, 368, 768, 1600, 3328, 6912, 14336, 29696, 61440, 126976, 262144, 540672, 1114112, 2293760, 4718592, 9699328, 19922944, 40894464, 83886080, 171966464, 352321536, 721420288, 1476395008, 3019898880
OFFSET
0,1
COMMENTS
Diagonal of triangles A062111, A152920.
FORMULA
a(n) = Sum_{k=0..n} (k+9)*binomial(n,k).
From R. J. Mathar, Apr 20 2009: (Start)
a(n) = (18+n)*2^(n-1).
a(n) = 4*a(n-1) - 4*a(n-2).
G.f.: (9-17*x)/(1-2*x)^2. (End)
a(0)=9, a(1)=19, a(n) = 4*a(n-1) - 4*a(n-2). - Harvey P. Dale, Mar 24 2013
a(n) = 2*A079862(n-10). - Michel Marcus, Sep 29 2015
E.g.f.: (x+9)*exp(2*x). - G. C. Greubel, Jun 02 2018
EXAMPLE
a(0)=9, a(1) = 2*9 + 1 = 19, a(2) = 2*19 + 2 = 40, a(3) = 2*40 + 4 = 84, a(4) = 2*84 + 8 = 176, ...
MATHEMATICA
RecurrenceTable[{a[0]==9, a[n]==2a[n-1]+2^(n-1)}, a, {n, 30}] (* or *) LinearRecurrence[{4, -4}, {9, 19}, 30] (* Harvey P. Dale, Mar 24 2013 *)
PROG
(PARI) Vec((9-17*x)/(1-2*x)^2 + O(x^40)) \\ Michel Marcus, Sep 29 2015
(Magma) I:=[9, 19]; [n le 2 select I[n] else 4*Self(n-1) - 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 02 2018
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Apr 20 2009
EXTENSIONS
More terms from Vincenzo Librandi, Apr 30 2009
STATUS
approved