login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211114
Number of (n+1) X (n+1) -2..2 symmetric matrices with every 2 X 2 subblock having sum zero and one or three distinct values.
1
9, 19, 39, 81, 167, 341, 695, 1405, 2839, 5709, 11479, 23021, 46167, 92461, 185175, 370605, 741719, 1483949, 2968919, 5938861, 11879767, 23761581, 47527255, 95058605, 190125399, 380258989, 760534359, 1521085101, 3042202967, 6084438701
OFFSET
1,1
COMMENTS
Symmetry and 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 6*a(n-3) - 2*a(n-4) + 4*a(n-5).
Empirical g.f.: x*(9 + x - 26*x^2 + 20*x^4) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - 2*x^2)). - Colin Barker, Jul 15 2018
EXAMPLE
Some solutions for n=3:
..2.-1..1.-1....2..0..1.-2....2.-1..0.-1....0..1..1..0...-2..1.-2..1
.-1..0..0..0....0.-2..1..0...-1..0..1..0....1.-2..0.-1....1..0..1..0
..1..0..0..0....1..1..0.-1....0..1.-2..1....1..0..2.-1...-2..1.-2..1
.-1..0..0..0...-2..0.-1..2...-1..0..1..0....0.-1.-1..0....1..0..1..0
CROSSREFS
Sequence in context: A145958 A290245 A039299 * A159697 A014005 A286624
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 02 2012
STATUS
approved