login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211111
Number of partitions of n into distinct divisors > 1 of n.
8
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 19, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 14, 1
OFFSET
0,13
COMMENTS
a(A136446(n)) > 1.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n=1..1000 from Reinhard Zumkeller)
EXAMPLE
n=12: the divisors > 1 of 12 are {2,3,4,6,12}, there are exactly two subsets which sum up to 12, namely {12} and {2,4,6}, therefore a(12) = 2;
a(13) = #{13} = 1, because 13 is prime, having no other divisor > 1;
n=14: the divisors > 1 of 14 are {2,7,14}, {14} is the only subset summing up to 14, therefore a(14) = 1.
MAPLE
with(numtheory):
a:= proc(n) local b, l; l:= sort([(divisors(n) minus {1})[]]):
b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i-1))))
end; forget(b):
b(n, nops(l))
end:
seq(a(n), n=0..100); # Alois P. Heinz, Nov 18 2021
MATHEMATICA
a[n_] := Count[IntegerPartitions[n, All, Divisors[n] // Rest], P_ /; Reverse[P] == Union[P]];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 18 2021 *)
PROG
(Haskell)
a211111 n = p (tail $ a027750_row n) n where
p _ 0 = 1
p [] _ = 0
p (k:ks) m | m < k = 0
| otherwise = p ks (m - k) + p ks m
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 01 2012
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Nov 18 2021
STATUS
approved