The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211110 Number of partitions of n into divisors > 1 of n. 14
 1, 0, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 12, 1, 3, 3, 10, 1, 15, 1, 16, 3, 3, 1, 80, 2, 3, 5, 20, 1, 94, 1, 36, 3, 3, 3, 280, 1, 3, 3, 158, 1, 154, 1, 28, 25, 3, 1, 1076, 2, 29, 3, 32, 1, 255, 3, 262, 3, 3, 1, 7026, 1, 3, 32, 202, 3, 321, 1, 40, 3, 302, 1, 12072, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS a(A000040(n)) = 1; a(A002808(n)) > 1; a(A001248(n)) = 2; a(A080257(n)) > 2; a(A006881(n)) = 3; a(A033942(n)) > 3. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 EXAMPLE a(10) = #{10, 5+5, 2+2+2+2+2} = 3; a(11) = #{11} = 1; a(12) = #{12, 6+6, 6+4+2, 6+3+3, 6+2+2+2, 4+4+4, 4+4+2+2, 4+3+3+2, 4+2+2+2+2, 3+3+3+3, 3+3+2+2+2, 6x2} = 12; a(13) = #{13} = 1; a(14) = #{14, 7+7, 2+2+2+2+2+2+2} = 3; a(15) = #{15, 5+5+5, 3+3+3+3+3} = 3. MAPLE with(numtheory): a:= proc(n) local b, l; l:= sort([(divisors(n) minus {1})[]]):       b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,              b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i))))           end; forget(b):       b(n, nops(l))     end: seq(a(n), n=0..100); # Alois P. Heinz, Feb 05 2014 MATHEMATICA a[n_] := Module[{b, l}, l = Rest[Divisors[n]]; b[m_, i_] := b[m, i] = If[m==0, 1, If[i<1, 0, b[m, i-1] + If[l[[i]]>m, 0, b[m-l[[i]], i]]]]; b[n, Length[l]]]; a[0] = 1; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *) PROG (Haskell) a211110 n = p (tail \$ a027750_row n) n where    p _      0 = 1    p []     _ = 0    p ks'@(k:ks) m | m < k     = 0                   | otherwise = p ks' (m - k) + p ks m (PARI) isokp(p, n) = {for (k=1, #p, if ((p[k]==1) || (n % p[k]), return (0)); ); return (1); } a(n) = {my(nb = 0); forpart(p=n, if (isokp(p, n), nb++)); nb; } \\ Michel Marcus, Jun 30 2015 CROSSREFS Cf. A211111, A018818, A027750. Cf. A210442. Sequence in context: A074206 A173801 A108466 * A325828 A200780 A338899 Adjacent sequences:  A211107 A211108 A211109 * A211111 A211112 A211113 KEYWORD nonn AUTHOR Reinhard Zumkeller, Apr 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 07:58 EDT 2021. Contains 346435 sequences. (Running on oeis4.)