login
A210442
Number of partitions of n into proper divisors of n, cf. A027751.
10
1, 0, 1, 1, 3, 1, 7, 1, 9, 4, 10, 1, 44, 1, 13, 13, 35, 1, 80, 1, 91, 17, 19, 1, 457, 6, 22, 22, 155, 1, 741, 1, 201, 25, 28, 25, 2233, 1, 31, 29, 1369, 1, 1653, 1, 336, 285, 37, 1, 9675, 8, 406, 37, 453, 1, 3131, 37, 3064, 41, 46, 1, 73154, 1, 49, 492, 1827
OFFSET
0,5
COMMENTS
For n > 0: a(A000040(n)) = 1 and a(A002808(n)) > 1.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 0..197 from Reinhard Zumkeller)
MAPLE
with(numtheory):
a:= proc(n) local b, l; l:= sort([(divisors(n) minus {n})[]]):
b:= proc(m, i) option remember; `if`(m=0 or i=1, 1,
`if`(i<1, 0, b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i))))
end; forget(b):
b(n, nops(l))
end:
seq(a(n), n=0..100); # Alois P. Heinz, Jan 29 2013
MATHEMATICA
a[n_] := Module[{b, l}, l = Most[Divisors[n]]; b[m_, i_] := b[m, i] = If[m==0 || i==1, 1, If[i<1, 0, b[m, i-1] + If[l[[i]]>m, 0, b[m-l[[i]], i]]]]; b[n, Length[l]]]; a[0]=1; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 02 2017, after Alois P. Heinz *)
PROG
(Haskell)
a210442 n = p (a027751_row n) n where
p _ 0 = 1
p [] _ = 0
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Reinhard Zumkeller, Jan 21 2013
STATUS
approved