login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210444 a(n) = |{0<k<n: k*n is practical, k*n-1 and k*n+1 are twin primes}|. 3
0, 0, 1, 2, 0, 4, 1, 0, 2, 2, 0, 4, 0, 1, 4, 2, 0, 6, 1, 3, 2, 2, 0, 5, 2, 1, 3, 1, 2, 11, 0, 1, 4, 1, 2, 6, 0, 2, 4, 3, 1, 9, 2, 3, 4, 2, 0, 7, 1, 4, 4, 5, 0, 8, 4, 1, 3, 3, 0, 15, 0, 3, 4, 4, 4, 13, 2, 4, 2, 5, 2, 10, 0, 2, 11, 2, 3, 12, 0, 6, 6, 2, 2, 13, 3, 5, 7, 5, 1, 16, 4, 4, 6, 3, 2, 11, 0, 8, 6, 7 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Conjecture: a(n)>0 for all n>911.
This implies that for each n=2,3,4,... there is a positive integer k<n with k*n practical.
The conjecture has been verified for n up to 10^6.
LINKS
G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2017.
EXAMPLE
a(7) = 1 since 6*7 = 42 is practical, and 41 and 43 are twin primes.
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n]
Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
a[n_]:=a[n]=Sum[If[PrimeQ[k*n-1]==True&&PrimeQ[k*n+1]==True&&pr[k*n]==True, 1, 0], {k, 1, n-1}]
Do[Print[n, " ", a[n]], {n, 1, 100}]
CROSSREFS
Sequence in context: A112081 A265158 A366907 * A226949 A166589 A332696
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 20 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 18:32 EDT 2024. Contains 373507 sequences. (Running on oeis4.)