login
A219315
Smallest prime of the form LegendreP[2*n, k], k integer > 0.
5
13, 10321, 1651609, 265729, 2418383311848550201, 143457011569, 4788279267715459491640247899801, 55836455668763269069656769, 21624792044006209908534390421, 996389426180855801077045825760311681, 97188318826075110353523764096667396436794217
OFFSET
1,1
COMMENTS
LegendreP [2*n, x] is the 2*n th Legendre polynomial of the first kind evaluated at x.
The corresponding values k are in A219313.
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
LINKS
Eric Weisstein's World of Mathematics, Legendre Polynomial
EXAMPLE
a(1) = 13 because LegendreP [2*1, x] = (3x^2 - 1)/2 and LegendreP[2,3] = 13 is prime, where 3 = A219313(1).
MATHEMATICA
Table[k=0; While[!PrimeQ[LegendreP [2*n, k]], k++]; LegendreP [2*n, k], {n, 20}]
PROG
(PARI) a(n)=my(P=pollegendre(2*n), k, t); while(denominator(t=subst(P, 'x, k++))>1 || !ispseudoprime(t), ); t \\ Charles R Greathouse IV, Mar 18 2017
CROSSREFS
Cf. A219313.
Sequence in context: A173506 A173840 A260457 * A068731 A189309 A203707
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 17 2012
STATUS
approved