login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A260457
Field discriminant of n-th composite, f(f(...f(r)...)), where r = 3 and f(x) = [x,x,x, ...] (continued fraction).
4
1, 13, 10309, 185025612421, 56226054983232874655910074821, 5090777843424139731612639602181310410515979763727978155884175693164901
OFFSET
0,2
COMMENTS
f(x) = [x,x,x, ...] = (1/2) (x + sqrt((4 + x^2));
f(f(x)) = (1/4)(x + sqrt(4 + x^2)) + (1/2)sqrt(4 + (1/4)(x + sqrt(4 + x^2))^2))/2;
Conjecture: a(n+1) is divisible by a(n)^2, for n>=1; see Example.
EXAMPLE
f(3) = (3 + sqrt(13))/2;
f(f(2)) = (1/4)(3 + sqrt(13) + sqrt(38 + 6 sqrt(13)));
D(f(1)) = 13; D(f(f(1))) = 10309;
a(2)/(a(1)^2) = 10309/13^2 = 61;
a(3)/(a(2)^2) = 1741;
a(4)/(a(3)^2) = 1642381.
(Regarding n = 0, the zeroth composite of f is taken to be 1.)
MATHEMATICA
s[1] = x; t[1] = 3; z = 8;
s[n_] := s[n] = s[n - 1]^2 - t[n - 1]^2; t[n_] := t[n] = s[n - 1]*t[n - 1];
coeffs[n_] := Apply[Riffle, Map[DeleteCases[#, 0] &, CoefficientList[{s[n], t[n]}, x]]];
polys = Table[Root[Total[Reverse[coeffs[n]] #^(Range[1 + (2^(n - 1))] - 1)] &, 1(*2^(n-1)*)], {n, z}];
m = Map[NumberFieldDiscriminant, polys] (* Peter J. C. Moses, Jul 30 2015 *)
Table[m[[n + 1]]/m[[n]]^2, {n, 1, z - 1}] (* divisibility conjecture *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 29 2015
STATUS
approved